Colored Strings

Ever since I started using the Polyphonic Multisample algorithm in the Disting Ex, and now the Disting NT, I wanted to do a string patch. For some unexplainable and inexplicable reason I never did. I got a taste of using string samples during a handful of Jamuary patches, particularly Jamuary 2507 and Jamuary 2510, when I experimented with using the very excellent Alexandernaut Fugue Machine and Decent Sampler, but I really wanted to do a string sample patch modular-style. At first I wanted to use the same string samples I used during Jamuary, the DK Solo Cello Spurs from Pianobook, but that did not work at all.1 After quickly pivoting to the LABS Low Strings Long samples included with the Disting NT, I was off.

Much of this patch is a simple altered duplicate of my last patch, so I won’t rehash the entire patch here. Many knob settings are different, and of course I triggered string and not piano samples, but the control and audio paths are largely identical. Because these string samples are inherently longer than piano notes, I had to drastically slow down The Hypster, the initial source for the master clock, in order to compensate and have Stochaos produce fewer gates. This slow down was coupled with using outputs on Stochaos that change much less often. I also tuned in the delay used on the string samples, the Qu-Bit Electronix Nautilus, to what I thought sounded best, thought I can’t recall the settings other than a long delay time with moderately high feedback. The Panharmonium settings were also changed drastically, cutting the number of voices, zeroing in on the desired frequency range, and really tuning the sampling time. Panharmonium is not always instant bliss, but given some gentle massaging it can become transformative. The Dradd(s), however, weren’t changed at all.

But even after being able to hone in on what I had hoped for the strings and the existing sound chain, there was something missing. It needed some kind of ornamentation. Something to juxtapose against the somber sounding string sequence plodding along in C minor. I initially thought of high pitched bells or sparkles of some kind, but then remembered a patch I did last summer as a test shortly before bringing a travel synth on a trip to Alaska. In that patch I used Plaits in the Vowel and Speech Synthesis algorithm (the last Green algorithm) to repeat four colors, Red, Orange, Yellow, Green. In this patch I took a slightly different approach, by using a random output from a Mutable Instruments Marbles to select the spoken color. I was quite happy with the result in the moment, but was carried away a bit during the performance with too many triggers. It should have been an occasional color spoken in a sad-ish voice to reflect the somberness of the strings, though it sometimes ended up being a robot talking over himself. I used a CV output from the Noisy Fruits Lab Lemon to control Marbles’ clock, which had a high amount of Jitter so as to not be regular. When I wanted more from Plaits, I pushed the fader to create more gates with Marbles. However I clearly pushed it too far during a couple of points. Initially I had Plaits running straight to the mixer, but later in the recording used Beads in full wet delay mode, which altered the tone slightly, and added a low number of soft repeats that really only served to add to the confusion. Plaits is simply triggered to often.

The proverbial icing on the cake was the Walrus Audio Slöer in “Light” mode, which is an octave pitch shift. But rather than a standard pitch shift, Slöer adds more of a choir or symphonic strings sound, which is absolutely beautiful. This patch used basic settings. Pitch shift volume at max, and clock speed at the slowest setting. There was a long decay, and a moderate amount of modulation.

Overall I’m quite happy with how this patch turned out. It’s beautiful and not deterministic. That said, the piece could use for some composed string sequences, even if only occasionally, in order to maximize tension and relief. I’m definitely going to try other adaptations, particularly in the timing of gates and pitch. I’m thinking the Addac508 Swell Physics might be a good place to start.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Lets Get Fenestrated
Nonlinearcircuits Stochaos
Nonlinearcircuits Triple Sloth
Vostok Instruments Asset
Expert Sleepers Disting NT
Addac System Addac814 6×6 Stereo Matrix Mixer
Qu-Bit Electronix Nautilus
Rossum Electro-Music Panharmonium
Pladask Elektrisk Dradd(s)
Mutable Instruments Marbles
Mutabke Instruments Plaits
Mutable Instruments Beads
Knob Farm Ferry
ST Modular SVCA
Intellijel Quad VCA

Outboard Gear Used:
Echofix EF-X2
Walrus Audio Slöer
Noisy Fruits Lab Lemon

Improvised and recorded in one take on iPad in AUM via the Expert Sleepers ES-9.

  1. I was getting all sorts of sputtering and general ugliness using these samples. I’m not sure if I was overwhelming the algorithm with too many gates, or whether the sample rate or bit depth of the samples was too high, or perhaps something else, but I quickly abandoned these samples in favor of the stock LABS string samples. ↩︎

A Piano Dream

As I was un-patching my Fall patch, I got a hankering. I’ve used Multisample Piano in several patches over the last couple of years, but I wanted to make another one with the piano as the focus of the patch, rather than an accompanying ornament. These sorts of patches aren’t terribly hard, but they are fun, and I love relaxing to them as they just play.

My first thought was to get a random distribution of triggers and let it roll. I began by using the same sub-patch that created the Fall emulation; a series of random envelopes cycling within a defined range, with the End Of Cycle trigger striking one of four gate inputs programmed on the Disting NT. That worked okay, but there was something not quite right. I was never able to pin down exactly what that was, but I decided early on to abandon that patch and try a combination of patches that I’ve used before to some really nice effect. Once I decided to switch things up, I knew exactly what I wanted to do.

Let’s Get Fenestrated, by Nonlinearcircuits, is one of Andrew’s newest designs. It’s a triple comparator with the sole job of spitting out gates once the inputs reach certain voltage levels. According to an email exchange I had shortly before its release, Andrew’s idea when designing this module was to create wonky clocks with chaotic sources. When I inquired, I was looking for a couple of tools, some type of comparator being one of them.1 Upon his announcement of its release I had Scopic Modular, the guy I use for all of my NLC builds and all around nice guy, order and build it for me. But despite having had it for a while I hadn’t used it much. In the time between seeking some form of comparator and receiving Fenestrated, I had worked up several patches to get chaotic gates. Numberwang was my primary tool, but also others. But as I started to think about how I would come up with a different clock algorithm for this patch, I immediately thought about using Fenestrated.

The patch started with a chaos signal from The Hypster. I initially went with the U output, because it has the biggest range of the four outputs, but despite modulation happening via patch-programming, the output was just too regular. No matter what I did with the comparator setting on Fenestrated, I got more or less a steady-ish beat. Not on a grid, but just a little too close for the style of gate generation I was going for. Switching to The Hypster’s Y output, and adjusting the window on the first comparator of Fenestrated, fixed that in short order. The new clock output from Fenestrated was patched to Stochaos, which uses chaos (or random, or both) to generate gate patterns. One advantage to using Stochaos is that, unlike Numberwang or using the End Of Cycle outputs on various free running function generators, it generates multiple gates at the same time, meaning I’d have both dyads and chords, along with singularly generated notes, which is not possible using those other methods. Numberwang spits out exactly one gate at a time, and the chances of two random, free running cycles of a function generator finishing at the exact same time is exceedingly low. Having found a good cadence of notes, I moved on to giving them a pitch.

I’m a fan of using a very small number of modules as what I like to call an engine. The thing that makes the patch go. It’s quite often that I’ll use only one or two modules to control an entire patch. Having used The Hypster to control gate generation, I initially decided to use its other outputs as a pitch generator, patching the X, Z, U, and -Y outputs to the Disting NT CV inputs, via the Vostok Instruments Asset so that I might massage the notes for each input into a good range focused on the lower-middle to middle parts of the keyboard. Notes that don’t require one to be a dog to hear, nor ones that often only contribute to a muddy soundstage if used too often, especially in a reverb-rich environment. But I wasn’t completely satisfied with the result, so decided then to use the four CV outputs on Stochaos, which worked wonderfully, even if I can’t explain why it was better.

At first I wasn’t sure how I wanted to ornament the piano, not that a piano and some reverb aren’t enough to be beautiful. I wasn’t set on a sound, so I began to experiment with delays. Normally I would go to the Venus Instruments Veno-Echo, but decided instead to use the Qu-Bit Electronix Nautilus. I wanted intermittent reverse delay, which the Veno-Echo can do, but I wanted to CV control the reverse parameter, and not simply gate it on and off. Although I don’t always appreciate prescriptive controls, if those controls are lightly modulated the result need not feel prescripted. With most delays, reverse delay is reverse delay. It’s on or off. But due to it having up to eight delay lines, the Nautilus takes a different approach. Rather than an on of off dichotomy, it prescriptively assigns reverse repeats as you turn the knob. At full counter clockwise there are no reverse repeats. But as you turn the knob clockwise, you get reverse repeats in patterns. From the manual:

I set the knob at just above full CCW. I wanted reverse repeats, but I didn’t want them to overwhelm regular repeats. Using an attenuated version of one of the Triple Sloths outputs (a medium length cycle) I lightly modulated the reverse knob, which ended in a wonderful mix of mostly forward repeats, augmented by the always beautiful zips of reverse delay. But it wasn’t quite enough. I wanted to make it a bit dusty, so chose to put a very light amount of sample reduction as the Chroma.2 This matched perfectly with the slow clock speed I had running on my reverb, the Walrus Audio Slöer. I next decided on how long of a delay I wanted, and ultimately went with a fairly long delay time, and used an internal cross-feedback pattern for the repeats.

Wanting to fill in some of the space, I decided to go with a combination of Panharmonium and the Dradd(s). I initially had an idea that I would pitch the accompaniment in opposite directions, Panharmonium down an octave and the Dradd(s) up an octave, but that created all kinds of sonic havoc, especially with the already pitched up reverb. It just was too much going on in too many frequency ranges to be coherent. One issue with this patch is that it’s a bit difficult to pick out the Panharmonium. It’s pitched downwards an octave to give the piece some depth, but it seems to get lost a bit. It’s noticeable when Panharmonium is not present, especially as I added some saturation via the Echofix EF-X2 pair towards the end, but it’s hard to pick out as a separate voice in this recording. I’m not sure whether that’s good or bad, though I tend towards wanting every voice to stand on its own. I’m not exactly sure why this voice is so buried in the mix, and I’m not sure if it’s a bad thing in the end, but it is a little frustrating.

The Dradd(s), however, came out exactly like I’d hoped. They were set to Grain Mode, and time stretched at a slow crawl, one channel in reverse, the other forward. I love granular synthesis. The textures it can create are wonderful, and this patch is no exception. Each piano note, and its successive repeats from the Nautilus, stretched to the furthest extremes, filled out space in a particularly interesting way that I found compelling; the Piano notes seemingly stuttered as they were dragged out as long as the Dradd(s) could manage. Not only did the Dradd(s) serve to fill in space, but they added a wonderful lo-fi texture to otherwise smooth piano notes. Beautiful.

One thing I’ve long wanted to experiment with is using multiple reverbs. Not simply stacking reverbs or using two (or more) in parallel, but by trying to use them as instruments unto themselves. I’m not exactly sure when I first heard this technique, though it was surely in the context of ambient guitar, but it wasn’t until I heard Music Major by A Last Picture From Voyager that I saw its full potential. I recently made a recording during which I featured the freeze effect from the Dreadbox Darkness, and it was great, even if it all started with an accident. I was mesmerized by the beautiful reverb tail hanging as if it were a mist. But despite initially patching in the Darkness, I was simply unable to find the same kind of magic present in that first recording. While trying to fiddle around with Darkness, I discovered that, with shifting soundscapes, timing is everything. Hitting the freeze switch a smidge too early or too late and the capture isn’t what one hoped it might be. Whether too soft or too loud, slightly dissonant or too plain, hitting freeze at just the right moment proved to be more difficult than I originally imagined. So I decided to try a new reverb that I got around the start of the year but hadn’t yet used, the Old Blood Noise Endeavors Dark Star Stereo, to see if I might be able to get better results.

Buying the Dark Star Stereo was a long time coming. OBNE has been making highly compelling effects pedals for a long time. Alpha Haunt, a flexible, nasty fuzz,, was my first foray with them. And even if I sold that pedal for something much more basic, I knew it sounded awesome and that I was totally into the OBNE ethos. Dweller (Dweller!) was my next OBNE purchase, and that thing is ace. A delay circuit inside of a phaser circuit that sounds both unique and beautiful. Next was the Rêver and its sibling, Minim, which are both absolutely brilliant reverse delay/reverb. But as I grew, and especially with modular, I was pretty adamant that my reverbs all be stereo, and despite having wanted to use OBNE reverbs for their unique tones, none of them were stereo. A little while back they released the Dark Light (now discontinued), which is a “stereo” mashup of the Light and Dark Star pedals. But I always felt the implementation was odd, and some sounds were disjointed. It was seemingly more a dual mono reverb than a stereo one, and it just didn’t sound right so much of the time. So I waited. Then a few months backs, OBNE finally released a true stereo reverb, this time a fully featured version of the Dark Star, their most popular reverb pedal (and my favorite of those I’ve heard), and I jumped on one almost immediately. When I bought it I knew I didn’t have room in my pedal rack. But after selling my Oto trio and getting the proper cables to patch it into my synth, it quickly made its way to the synth FX rack, even if I all but ignored it during Jamuary when I didn’t touch it once.

The Dark Star Stereo is a lo-fi reverb, complete with pitch shifting (up or down), filtering, saturation, and sample reduction, along with mix, volume, and stereo spread. It’s designed primarily for soundscape and pad generation, but works great on any source. The default sound without any pitch shifting, filtering, sample deduction or overdrive is soft and gentle. But once you begin to shape the sound it begins to texturize in haunting ways. A bit of crunch to add some dustiness here, some high pass filtering there, and you have a beautiful ambient reverb that can last for days. In this patch I used a smidge of sample reduction and high pass filtering, along with pitch shifting up an octave. Compared to other implementations, the pitch shifting feature is…different. Rather than a cheesy sheen or beautiful choir-like effect, Dark Star Stereo produces more of a granular sounding pitch shift that can be a bit jagged sounding (in good ways), though I do wish that one could control the amount of pitch shifting in the output so that I can more easily get less of it. In this patch the Dark Star Stereo is introduced briefly at about 3:25, a second time around 4:35, then I used it very subtly as a parallel reverb from about 5:18 through the end. The result here was “okay.” It wasn’t exactly what I’d hoped for, but it was a good first foray into using reverbs in this manner., and a step in the right direction for future exploration.

The end-of-chain reverb in this patch is the ever-beautiful Walrus Audio Slöer, with a smidge of its choir-like pitch shifting that is exceptionally beautiful. The Slöer has been my go-to reverb since receiving it, and I simply can’t envision not having one.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Lets Get Fenestrated
Nonlinearcircuits Stochaos
Nonlinearcircuits Triple Sloth
Vostok Instruments Asset
Expert Sleepers Disting NT
Addac System Addac814 6×6 Stereo Matrix Mixer
Qu-Bit Electronix Nautilus
Rossum Electro-Music Panharmonium
Pladask Elektrisk Dradd(s)
Knob Farm Ferry
ST Modular SVCA
Intellijel Quad VCA

Outboard Gear Used:
Echofix EF-X2
Old Blood Noise Endeavors Dark Star Stereo
Walrus Audio Slöer

  1. I also inquired about a gate combiner, to which he responded that would be a good idea, and wrote back a couple of days later with the design for Gator. ↩︎
  2. Chroma is an effect that’s applied to the delay feedback path. Other effects are a LPF, HPF, saturation, wavefolding, and heavy distortion. ↩︎

Jamuary 2517

Today’s patch was a long time coming. Several years ago I saw a patch from scratch video by Omri Cohen which used a Befaco Rampage as the base of everything else. It dictated volume, speed, when pitch changes would happen, timbres, and lots of others things besides. I was inspired, and immediately purchased a Rampage. Only I never tried that patch, and moved on to other great things.

Even though I no longer even have that Rampage, I do have several other Function Generators with many of the same features, and after watching the video again recently, I decided today was the day. Only I cheated a little bit. Rather than patch up various Sample and Hold modules to vary envelope length for the higher Brenso voice, I used the Addac506 Stochastic Function Generator which accomplished the same effect. I initially tried using a Falistri but the pitch was always changing a fraction too late for the cycling envelope, and I’d hear that pitch change. I worked on it for a bit, but decided to move on once I realized I wasn’t getting anywhere. To be fair, it was similar with the Addac506, but since I can negatively offset its functions directly, I was able to make it so that always happened in silence, and didn’t give a noticeable blip. I could have accomplished the same thing using a separate offset with the Falistri envelopes, but in a bit of laziness decided I didn’t want to patch it. I did use a certain kind of Sample and Hold for pitch voltage, via Quantermain for quantization into D# Phyrigian (which gives it a dark, mystical feel – like were walking through a dark elvish den), from the Nonlinearcircuits Helvetica Scenario. It differs from a standard Sample and Hold module in one unique way. Rather than using a noise source for sampling voltages, Helvetica Scenario uses a Jerk Chaos circuit running at 300Hz, which, from a practical standpoint, is similar enough.

That varying envelope and pitch control a Frap Tools Brenso, with its wave shape being modulated, along with a slight bit of modulation to the wavefolder. I’ll be the first to admit that I haven’t used Brenso very much. Not nearly as often as I should. I’m generally a bit intimidated by complex oscillators, and have mostly used them as two separate oscillators without the FM or waveshaping features, but in the spirit of loving my Frap Tools case and generally trying new things during Jamuary, I decided to give it a bit of a shot by using the waveshaper and wavefolder features. At least a little bit. I would have used some FM too, but decided to leave that for another day. I did note, however, that while patching Brenso, how beautiful the sound was. Reedy in some ways, at least before running it through the noisy PT2399 delay chip of the Bizarre Jezabel Quarté Mk2. I then ran it through to ST Modular Sum Mix & Pan to slowly pan the signal across the stereo field.

This voice was doubled by the Dradd(s) in Grain mode, time stretching the Brenso part, but at a fairly high clock rate to both shorten the buffer, and produce shorter grains.. I’ve really enjoyed using the Dradd(s) this way of late.

The ever oozing chord base underneath is the Humble Audio Quad Operator with a set chord of the one, three, five, and seven of D# Phrygian (D#, F#, A#, and B). I initially used three cycling envelopes from a pair of Falistris to control the level of those notes, but opted in the end to use a cycle similar to the one I used in Jamuary 2505 and 2511, where the End of Rise gate would trigger the next envelope, allowing the next note to fade in while the current note fades out. I should have used Sample and Hold on these envelopes to vary their length, but opted not to in the end to allow the main Brenso voice to monopolize attention. All four oscillators were mixed to mono in Intellijel Amps, and sent to the Bizarre Jezabel Pkhi Mk3 for low pass filtering before the output. The low passed audio signal was also sent to a the Venus Instruments Veno-Echo, which had its high pass filtering enabled in the feedback loop so as not to muddy the sound. I was never fully happy with how this voice turned out. The mix was too easily blown out, giving it a much darker and grittier feel than I initially intended, though after a bit of struggle, decided to lean into it a bit. I need to find a different way for gentler chord washes like this using saw waves. Some of the individual tones were buried in the mix, and at times the chord is lost.

My forgetfulness finally caught up to this Jamuary day. I forgot to take pictures of this patch before I had to turn everything off for the night so my wife could go to bed, so no pretty eye candy tonight. I may add some tomorrow. If I remember anyways.

Modules Used:
Frap Tools Brenso
Frap Tools Falistri
Addac Systems Addac506 Stochastic Function Generator
Intellijel Amps
Humble Audio Quad Operator
Nonlinearcircuits Helvetica Scenario
Nonlinearcircuits De-Escalate
Nonlinearcircuits Triple Sloths
Bizarre Jezabel Quarté Mk2
Bizarre Jezabel Pkhi Mk3
ST Modular Sum Mix & Pan
Venus Instruments Veno-Echo
Befaco/DivKid Stereo Strip
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Toneboosters TB Equalizer 4

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

Jamuary 2509

Today I decided to go back to a technique I’ve rarely used, and on a much grander scale. I don’t use noise very often, and when I do it tends to be for the obvious use cases. Hit hats, wind and ocean sounds, sprays, etc. I seldomly use it for modulation, and only once have I used noise of any flavor to amplitude modulate an oscillators wave. Today I would do it again, times eight.

I conceived of using noise to modulate all eight harmonics of the Verbos Harmonic Oscillator this morning as my wife was talking to me. I even popped up a bit at the idea, and she took notice.

Wife: “What?”

Me: “Nothing. Just had a thought occur to me. Not even sure if it’s worth a shit.”

I spent the better part of the morning and early afternoon thinking about how I wanted to do this patch. I knew that just noise into each harmonic’s VCA wasn’t it. Then it occurred to me: Chaos! As soon as this though hit my brain I knew what to do, and immediately went to the synth to start patching.

I ran blue noise from Sapel to input 1 of the Intellijel Amps. Amps is a special sort of VCA. Everything cascades. All inputs cascade, as do CV inputs, and there are mixing outputs as well. It’s incredibly flexible. I have four of them chained together to be an eight channel “super VCA/submixer” and it’s been a great choice. Since each input cascades, I only needed one noise input to run this entire section of the patch. Every other channel received that same blue noise input as well. Into each channel’s CV input I patched one of the eight outputs from Nonlinearcircuits The Hypster to chaotically modulate the noise levels of all eight channels independently. Once that was patched, I ran each Amps output to its own Harmonic Oscillator VCA input at random. The only part of this patch that was planned were the first and fifth harmonics, which received their noise modulation from the U and -U outputs on The Hypster as they’re the outputs with the highest amplitude. Each harmonic was slowly brought in by slowly adjusting each CV attenuator individually at random until they were all playing. The nature of chaos means that cycles, even if semi-regular at times, don’t repeat exactly the same, and the harmonics never played the same twice, which kept movement interesting. There were often pauses or redirections in motion for each harmonic. Wonderful.

The mixed HO output was patched to the Multi-Delay Processor. I’ve been taken in by the earthy sound of the Harmonic Oscillator. Each harmonic sine wave has a little hair on it once you give them a little push. The drive in the MultixDelay Processor, both on the input and on each tap output, accentuates that hair in all the right ways. This Verbos ecosystem is warm and inviting, but it can also roar. Taps four and eight were patched to the Verbos Scan & Pan, hard panned left and right, and the output of the MDP, which only had the dry signal, was patched to be in the middle of the mix. This mix created a strong signal with some subtle stereo movement which ended up being fantastic. This stereo signal was then patched to the stereo matrix mixer to be spread around to different effects.

The Rossum Panharmonium fed the Holocene Electronics Non-Linear Memory Machine, which was set with a fairly slow delay and full clockwise smearing, which really smoothed out the Panharmonium’s output for an accompanying drone that floats along beside the ever moving Harmonic Oscillator. This output then fed the Dradd(s), which did its thing in Grain Mode (although I think I forgot to turn on the modulation to both P1 and P2 on both Dradds 😬 – I’m also not convinced it isn’t lost in the mix).

I’m very pleased with how this patch turned out and was a great success at using this technique which I’ll be sure to use more often.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Triple Sloths
Intellijel Amps
Frap Tools Sapel
Verbos Harmonic Oscillator
Verbos Multi-Delay Processor
Verbos Scan & Pan
AI Synthesis 018 Stereo Matrix Mixer
Rossum Electro-Music Panharmonium
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Toneboosters TB Equalizer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

Jamuary 2508

I was short on time yesterday, so put together a reasonably simple patch on the iPad. This Jamuary I’m purposefully trying to use unfamiliar techniques with unfamiliar instruments, and that’s what yesterday was all about in the little time I had. But the patch turned out so beautifully that I wanted to take some time to explore its possibilities in the modular. My first thought was to try and use the Oxi One as a Midi > CV converter so that I might patch the outputs of the Alexandernaut Fugue Machine to something like the Synthesis Technology E370 or some other quad sound source. But despite spending the better part of three hours trying to figure it out,1 I still had achieved no progress and so abandoned the idea and decided to do the next best thing. To patch a more intentional version of Jamuary 2507 into the modular and run it through several effects and see if I couldn’t come up with something new.

The initial patch is the same. Fugue Machine feeds the Klevgrand Speldosa and Decidedly Decent Sampler software instruments in AUM. Yesterday those went to reverb and I called it a day. The patch was beautiful and full of promise. Today went much further. The outputs of both Speldosa and the Cello samples were sent from AUM, via the ES-9 outputs, to the AI Synthesis 018 Stereo Matrix Mixer so that they might be spread around the system to three different effects, shifted and morphed matrix style, and finally sent back to AUM before getting some reverb. Though I’m trying new techniques with new things, that doesn’t mean everything in a single patch, lest I become overwhelmed and frustrated.2 The effects I chose were the Venus Instruments Veno-Echo,3 Pladask Elektrisk Dradd brothers, and the Rossum Electro-Music Panharmonium. Speldosa and the cello samples were sent to the delay, with Speldosa only going to Panharmonium, while the cello only was initially sent to the Dradd(s), before adding the delay to the Dradd(s)’ input, slowly adding more, and allowing those higher pitched notes to be granular-ized and spread through the stereo field. The Dradd(s) really turned out to be the highlight, though the delay isn’t far behind. Panharmonium sounds nice, as it always does, but seemed to get lost when it wasn’t leveled as a prominent voice in the mix at a given moment.

Modules Used:
AI Synthesis 018 Stereo Matrix Mixer
Venus Instruments Veno-Echo
Pladask Elektrisk Dradd(s)
Rossum Electro-Music Panharmonium
Nonlinearcircuits Triple Sloth
CuteLab Missed Opportunities
Calsynth Twiigs
Frap Tools 333
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Alexandernaut Fugue Machine
Klevgrand Speldosa
Decidedly Decent Sampler
Toneboosters TB Equalizer
CoVariant

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. To be fair, I struggle with just about everything with the Oxi One. I really need to revisit it with purpose. ↩︎
  2. I recently suffered that sort of frustration when I put two completely unfamiliar modules in my Xmas 2024 Synth. It was an exercise in frustration when it should have been a relaxing time. ↩︎
  3. I used CoVariant, a now seemingly discontinued midi > cv plugin for the iPad to send out an analog clock from the iPad that is perfectly in sync with the midi clock generated by AUM. I will never delete this plugin as long as it continues to work. It also does midi > CV conversion (but I couldn’t figure it out). ↩︎

Stochaotic Bubbles: Effervescent Chaos Up And Down

Since I’ve recently received several modules, I’ve been using them rather heavily of late, and they’ve kind of taken front and center. The Nonlinearcircuits Stochaos and Humble Audio Quad Operator are featured in many of my recent patches, and this is no exception. I wasn’t sure, exactly, what I wanted with this patch, but I knew I wanted a chaos clock that was moving fast. I wanted lots of gates firing quickly, and use those gates to hit 4 separate LPGs, this time a pair of Tokyo Gates. Then I knew I wanted these quickly firing notes to be heavily delayed, and sent to a resynthesizer to fill in space and give something for those quickly firing notes and repeats to swim in. I wasn’t imagining bubbles when I first started, but that’s what I kept coming to as I was fiddling with the patch, and after a while leaned into this theme a bit to see where I could take it.

Getting a fast chaotic clock was the easy part. I’ve been using chaos-based clocks almost exclusively for a few months. I don’t mind a grid, but most of my creative inclinations are more towards malleable textures, and chaos provides an almost perfect ebb and flow. At slow tempos it’s definitely noticeable, but this patch was to be clocked at a very high rate; perhaps even approaching audio rate, and those differences at high rate are much less noticeable As per usual, I sent the modulated chaos signal to Divide & Conquer, before sending a fast division to Stochaos. From there the chaos-generated gates would go to the CalSynth Changes to create some snappy decay envelopes that would hit the CV input of four separate Tokyo Gates. The outputs of the Tokyo Gates were mixed into 2 signals in the Mutable Instruments Veils, and finally sent to the AI Synthesis 018 Stereo Matrix Mixer.

The audio is from the 4 operators of the Humble Audio Quad Operator. Although I initially experimented with tweaking the wave shape of the operators, several times, actually, I settled on sine waves. I also tried to work in some FM, but I couldn’t find exactly what I was looking for, which is likely because I was using all 4 operators as carriers, rather than trying to use just a couple of the oscillators as carriers, with the others acting as modulators. It’s tough to get oscillators to behave when you have lots of cross frequency modulation happening. Generally it’s pretty pedestrian as far as the audio source, but there are so many individual notes that are echoed so many times that anything much more complex might be a wall of sound rather than something more enunciated.

The pitch signal is taken from a slow chaos wave through Xaoc Devices Samara II for some careful offset and attenuation before going to uO_C’s Quantermain for quantization into D minor (even if I have no idea what the oscillator is actually tuned to), before being sent to the v/oct input on the Quad Operator. That accounts for the generally up and down nature of the pitch progression. It’s also a good example on how chaos operates. It’s steady-ish, but there are definitely times when the chaos deviates from its path. Sometimes that means speeding up or slowing down. Sometimes that means direction reversals. Sometimes it means lingering at some pitches longer than others. You think you know what’s going to happen, but then the chaos surprises you, providing something interesting. Even still, I feel like there is too much of the same thing when it comes to the pitch in this patch, but since it was more an exploratory patch I think I can forgive myself.

I recently became aware to the dismal fact that my main synth, a large set of separate subsystems that comprises 1,560hp and that has another 588hp in interchangeable subsystems, did not have a vactrol-based LPG in it. Despite having several vactrol LPGs from the Make Noise LxD and Optomix, to the Nekyia Sosumi, and still more, not a single one was in my main case. All of them had been moved to either my Make Noise Satellite Subsystem, or else my Side Case. I have plenty of non-vactrol-based LPGs like the Rabid Elephant Natural Gate, Bard Synthesizers VTG, Frap Tools CUNSA, and Verbos Amp & Tone in the main case, but not one vactrol LPG. As soon as I came to this realization I knew that it couldn’t stand for a single moment longer, and moved a pair of Tokyo Tape Music Center Tokyo Gates from my side case back to the main case. I’d get 4 channels of my favorite vactrol LPG to go along with all of the additive-style oscillators I tend to gravitate towards. Three Body, Quad Operator, Algo, Mob of Emus, and many others besides pair so naturally with a LPG that it seems boneheaded to not have them ready for the occasion.

I’ve liked LPGs for a long time. My first foray was via the Make Noise Optomix, which quickly led to several others, both with and without vactrols. I like both types, but it’s the non-exactness of vactrols that really draws my ear. They can be a little sloppy, particularly when hit repeatedly with a gate or envelope. Vactrol-less LPGs like the Natural Gate or DXG too sound great, but there’s something about their precision that doesn’t feel the same as with vactrols. It’s almost too perfect, and too repeatable. I also feel that vactrols bleed prettier, which is a patching technique I love to use. I don’t know whether I was insistent in using vactrol LPGs in this patch because I thought they’d be best, or because I had just put four of them back in my main case, but I decided on using the venerable Tokyo Gate.

Even if I don’t use Tokyo Gate very often, it is my favorite of the vactrol LPGs I’ve had. Its decay is adjustable (to a degree) with the Bridge control, pleasant, and even can have a little squelch of resonance if you pin the Bridge knob full CW. Although you can directly ping Tokyo Gate with a trigger or gate just fine, I’ve found that envelopes generally sound more pleasant to the ear. There’s a harshness with slamming a gate into that isn’t there when using a well shaped decay envelope.

In this patch, because I was using sine waves, the Tokyo Gate probably performs not much different than a regular VCA. There are no harmonics in a sine wave to reveal and hide again as the filter also goes up and down with the volume, but you still get that vactrol decay which can’t really be had with anything else. I also liked the perceived sloppiness of the vactrols as they were being repeatedly hit by envelopes. All of the chaos-derived gates flying about in rapid succession, triggering short, snappy envelopes started to resemble four separate telegraph signals flying about in space.

And although the effect of four vactrol LPGs pinging away was pretty cool, I knew that I wanted a lot more of it by using delay. These pings were the start, not the end. Far from it. Rather than using one delay like I normally might, I opted to use two of them in parallel.

Delay number one was the Venus Instruments Veno-Echo. Its reverse function per channel was being modulated by chaos-derived gates from the very slow end of the Divide & Conquer. Since the original chaos clock signal itself was running quite fast, even very low divisions would trigger too frequently for me, and decided to run those gates through the CuteLab Missed Opportunities gate probability utility that I tend to use in most of my patches.

The second delay is the Olivia Artz Modular Time Machine. Using various delay taps would ensure the effervescent feeling I was getting as the patch started to take some shape, spraying delays all about the stereo space. Besides creating that bubbly feeling I was now striving for, the Time Machine is also the source audio for the Qu-Bit Aurora resynthesis module that fills in the gaps and helps create something thicker for those bubbles to float in.

Altogether we have the feeling of bubbles floating around space. One thing I might try in a future patch like this is to use the pitch as CV for the clock rate. As the pitch changes, so too does the clock, creating more gates with higher pitched bubbles, and fewer with lower pitched bubbles. I’d also be a bit more inventive with my pitch sequence as well. This is just a chaos signal triggering Quantermain as it moves through from note to note in the selected scale. Even if I want to use chaos as a source for pitch, in order for there be some quality pitch movement I’d be better off using one of the chaos derived gates to trigger the quantizer via some labyrinth of gate probability, logic, and/or a Bernoulli Gate.

Altogether there isn’t anything special about this patch other than it was experimentation throughout. Experimentation with chaos as pitch. Experimentation with extremely fast gates with vactrol LPGs. Experimentation with delay taps to get a good feeling of watching bubbles in a freshly poured glass of Coke. Experimenting with parallel delays. Experimenting with Aurora.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Divide & Conquer
Nonlinearcircuits Stochaos
Nonlinearcircuits Triple Sloth
Xaoc Devices Samara II
CalSynth uO_C
Humble Audio Quad Operator
CuteLab Missed Opportunities
CalSynth Changes (MI Stages)
Mutable Instruments Veils
Tokyo Tape Music Center Tokyo Gate
Olivia Artz Modular Time Machine
Venus Instruments Veno-Echo
Qu-Bit Electronix Aurora
Knob Farm Ferry
Vongon Ultrasheer

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

Chaos Organ: A Quad Operator Experiment

Hi, my name is Chris, and I’m a chordaholic.

Lately I’ve been in a polyphonic mood, attempting to find evermore methods of creating chords and chord sequences with the modular synth. Using a DAW for this sort of thing is child’s play, but in modular synthesis, creating polyphonic chords isn’t a straightforward task most of the time. Most oscillators can only output one pitch at a time, and using multiple oscillators can create timbre mismatches. Tuning 4 or more oscillators to the same pitch while not suffering from pitch drift over time is a chore and a half. Sequencing chords in a traditional modular sequencer can be a mission rife with potential problems, and you don’t always want the repeating uniformity of a sequence, but something more organic. In short, modular synthesis is traditionally a monophonic enterprise, with only a small handful of monophonic voices being used together. A melody, a bass line, perhaps something else to fill in space, and some effects to create a stereo space. Full on chord generation isn’t common because it’s a tedious exercise that generally requires a lot of gear and even more patience. But over the last couple of years this is beginning to change. Although there have always been ways to create chords and chord progressions in modular synthesis, it’s not until relatively recently that we can more easily create chords. Oscillator banks like the Xaoc Devices Odessa (with its expander, Hel), Humble Audio Quad Operator, and RYK Modular Algo, and chord sequencers like the NOH-Modular Pianist make composing with chords on the modular a much more efficient and simple process.

In a previous patch I used the very excellent (and recently updated) NOH-Modular Pianist to create chords that were triggered by an irregular chaotic gate pattern. Although I am generally psyched about how that patch turned out, there are still a couple spots of ugliness that appear due to a bad match of back-to-back chords in the progression. On their own they sound fine. But once smeared out by the delay, FFT resynthesis, and reverb, there is some clashing that happens, creating some ear-cringing dissonance. I wanted something cleaner, and I didn’t want to have prescribed chords, but something that could change organically with a bit of modulation, without the worry of a spicy note peeping its ugly head in. Enter Quad Operator.

The Humble Audio Quad Operator is a bank of 4 oscillators that can be tuned to harmonic and subharmonic ratios of a base pitch. Tune the base pitch to your liking, then simply adjust the ratios of each operator, and you have oscillators that are all harmonically in tune. Patch in a single v/oct signal, and all 4 operators will move along in harmony. The Quad Operator is primarily designed as a the ultimate FM oscillator with any traditional FM algorithm possible, along with any other combo of modulator/carrier you can imagine. But with each operator being independent with its own output (both in a mix and independently), using it as a complex chord generator is a very happy side benefit. Input a single v/oct signal, output always-harmonically related chords. Add in some modulation of a couple of the operator’s ratios, and not only will the chords always be harmonically relevant, they’ll also quite often be different (even if the base of the chord is the same). For modulating the ratios I used both the Nonlinearcircuits Stochaos and the Auza Wave Packets.

There are lots of methods for getting a nice v/oct signal. Sequencers are the obvious solution, but with a quantizer any signal can be a used for pitch. S&H is extremely popular, but random pitch is only slightly less boring than patterns repeating themselves over and over in the exact same way. One solution is to use LFOs alongside triggers to create melodies or arpeggios. Envelopes work great too. But I wanted something a smidge different. LFOs and envelopes repeat themselves by nature. Unless modulated, an LFO or envelope is the same up and down every time. This regularity can be mitigated by irregular triggers, but then it starts to veer towards random, which isn’t really what I’m after. Enter chaos.

In my post, Chaotic Gates, I explained how chaos signals are regular-ish. They take the same general path on each pass, but some unknown irregularity in the feedback path will shift it off course in a non-regular way. These signals are kind of regular, but enough differences come about that there are always surprises. I mostly use chaos as a modulator of some kind. Opening and closing filter cutoffs or wavefolders, slowly modulating level, timbre, or some other facet of a patch. Today I would use it for pitch.

In most circumstances I would use triggers alongside my CV input with a quantizer. Send off a trigger, and whatever voltage is present at the quantizer’s input is sampled, quantized to the nearest note of your chosen scale, and output to the v/oct input on your oscillator. But some quantizers can function without a corresponding trigger, sensing voltage changes, and quantizing automatically once it detects a change large enough to be a separate note in the scale. Quantermain, the quad quantizer algorithm on the ever-useful Ornament&Crime, has this capability, and I decided to give it a whirl. It should be easy enough. Shove in a chaos signal, get quantized pitch CV on the output. And by and large, it was that easy. I knew I wanted fairly slow chord changes, so I needed a slow(er) moving chaos signal. After a bit of attenuation of the chaos signal to reign in the range, I was getting exactly what I wanted. Irregularly moving chords that shift at irregular speeds and that have irregular movement both up and down.

But chords themselves, cool as they are, need embellishment to be interesting. For effects, I sent the chords, via the stereo matrix mixer, to the Qu-Bit Nautilus for some smearing with low pass filtered delay, before going to the Instruo Arbhar. My initial plan was to have some shimmery granular action floating on top of the chords, but I could never find what I was hoping to get. Instead I found a happy accident of harmonically relevant dancing grains that moved to a rhythm.

These dancing grains, although not at all what I envisioned when I set out on this path, turned out being perfect, giving a sense of life inside the thick chords. Like minnows in a lake, or lightning bugs in the night.

Enjoy!

Modules Used:
Nonlinearcircuits Triple Sloth
Nonlinearcircuits Stochaos
Auza Wave Packets
Humble Audio Quad Operator
ST Modular Sum Mix & Pan
AI Synthesis 018 Stereo Matrix Mixer
Qu-Bit Electronix Nautilus
Instruo Arbhar
CalSynth uO_C
Knob Farm Ferry
Mutable Instruments Blinds
Oto Bam

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.


0:00
0:00