A Saunter Through Chaos

I recently sat down with a goal: identify modules in my synth that are underutilized, and make a plan to integrate them into my patches. Like all musicians, synthesists can fall into patterns. We use the same techniques and too often travel similar routes. Though my repetition of techniques of late is somewhat purposeful as I learn new gear, its’s still repetition, and it’s nice to walk on untrodden ground every once in a while.

While I was looking through my folder of manuals, I quickly identified a module that I’ve only used once, and over a year ago: the Blukač Instruments Endless Processor.1 On paper this sort of module seems a natural partner for the kinds of sounds I use most, but for some reason I’ve tended to reach by it and patch something else like the Rossum Electro-Music Panharmonium or Qu-Bit Electronix Aurora. In a bid for some nonlinearity in my practice, I decided that the Endless Processor would be the first of those unused modules to put through its paces.

This patch uses chaos to create a sequence. The starting point is The Hypster by Nonlinearcircuits. I use The Hypster in a lot of patches for a lot of different purposes. I use it for “normal” modulation, the beginning of a chain to make clocks, pitch CV, and maybe more. It’s definitely one of my favorite modules overall, and a top two or three modulator that I’ve used. The Hypster serves many purposes; sometimes more than one in a given patch. In this patch it would serve all three of those functions, plus a bit of self-modulation to keep it from settling into something resembling a pattern.

Four outputs from The Hypster (X, Z, -Y, -U) were patched to another Nonlinearcircuits module, Numberwang, for some good old fashioned gate extraction. The last time I used Numberwang, I wanted a steady-ish rhythm. Not perfectly-on-the-grid steady, but something close, even if it had the propensity to drift (which was a big part of the point), which is why I didn’t modulate The Hypster in that patch. But this time I didn’t want steady. I wanted gates that can’t easily be tied time, which required a meandering source. Chaos can meander a bit, but it can also become regular in that chaotic kind of way. I didn’t want the regular part this time, so modulation of at least one parameter was crucial. Once I started to ping my oscillators with gates from Numberwang and found a frequency on The Hypster that provided a satisfying cadence, I set out to modulate both the Damp and Gain settings. Adding gain adds both voltage and nonlinearity to the feedback loop. More gain is higher output levels and more meandering. Damping suppresses those things in interesting ways. Modulating both brought revealed the chaotic nature of the signal, specifically through the pitch CV, but also in the gate pattern from Numberwang.

This wasn’t the first time I’ve used a chaos signal an a source for pitch CV or gates. But it was the first time I’ve used chaos as a source for pitch and gates while I performatively modulated it so that I would have more control over its range, or the way it meanders. Too much gain and you have pitches more fit for dogs than humans) Too much damping, and you have pitches without enough variation to keep the note sequence interesting, and gates that quickly turn into patterns (even if they do drift a bit). To modulate gain, I used The Hypster’s next door neighbor in my case, Frisson. I also used the -Z output to self-modulate Damping. Although both the Gain and Damping CV inputs both have attenuators, I patched both signals to an attenuator to fine tune the level of modulation The Hypster was receiving. Even very small turns of either attenuator knob revealed very interesting results that would be difficult to achieve with one-pass attenuation at the CV input. Slightly different gate patterns; slightly different notes in the pitch sequence. All very interesting and necessary in order to keep any part of the sequence from becoming dry or repetitive for too long.

I’ve used chaos as a pitch CV source frequently, but this time was a little different. Normally I use one source signal for each oscillator in the patch. But this time I decided to use just one chaos signal as the source for all four oscillators, clocked by Numberwang separately in four separate channels of Quantermain. I controlled the range of pitch primarily through an attenuator, the Nonlinearcircuits De-Escalate.2 This allowed for small changes in pitch choices. One thing I would likely do differently would be to minimize very low pitches by using some offset to the signal before attenuation, especially as I opened up the attenuator. Higher pitches also means lower pitches at the bottom end without some offset, and some of the pitches on the low end are just a little too low for my liking. I imagine some are even inaudible.

The pitch sequence (in D Minor) was sent from Quantermain to the four wavetable oscillators of the Synthesis Technology E370, with all four oscillators tuned to the same pitch, even if I couldn’t tell you what that pitch is. Each wavetable was lightly modulated by the Frisson, with each oscillator detuned slightly by hand. This constant variation in timbre created a wide variety of sounds. Each note just a little different than the last time it was struck. The oscillator outputs were patched to a pair of Rabid Elephant Natural Gate LPGs for pinging, using the same four Numberwang outputs that selected pitch for each channel.

The result is a dance of orbs in some fantastical forest, or drops of water falling to make music, like something akin to a fast moving Fall on the Monome Norns. It’s a beautiful generative sequence, even if this version of the patch used some human assistance. Using a VCA to control levels of the pitch and modulation signals with a very slow modulator would be the key to make it fully generative. In fact, I’ll put that in my patch book to use in the future!

In this patch I used a very simple stereo algorithm: the first Natural Gate outputs are the left channel, and the second Natural Gate outputs are the left channel. Although this decision created a wide stereo space, four separate events happening independently, two in each ear, can become a little distracting and separated, even if it also heightened interest. I think I might have been better served to send these outputs to a panning mixer for mixdown to place them a little more carefully in the stereo field, though I won’t go so far as to say that change should be recorded in ink. There is no sense of a unified space until these completely independent left and right channels hit the stereo reverb.

This effect was exacerbated by the dual mono delays used in the patch, a pair of Echofix EF-X2 tape echoes. Each was set to augment the original’s clarity, holding on to timbre as long as it could until atrophy took hold. Each delay was also set to a different delay time and tape head playback/feedback configuration which created very different echo patterns, heightening the very different sequence patterns in each ear.

But I made a terrible mistake. Throughout much of the recording you can hear some clipping in the left channel. While I investigated I made sure levels were good going into the audio interface. Not only were they not too hot, I’d have liked for them to be even louder. At first I thought it might be some artifact in the wavetable being modulated. But why only that wavetable? I then thought I might have set an envelope a little hot before going to Natural Gate, but that wasn’t it either. Then I heard it. A clue. The clipping wasn’t on the note generation itself, but only occasionally on the very first repeat of only particular notes. It doesn’t happen all of the time. As I was recording i investigated my gainstaging. I discovered that my levels going into the left channel delay were quite hot, and that’s what was causing the clipping; the inbuilt analog limiter that was occasionally being hit very hard and distorting. At least I think that’s what it was. Toward the end of the recording I adjusted the input level to the left delay which seemed to mostly sort the issue.

I also used The Dradds in this patch, although in a way I had never used them before, with the Grain algorithm. I had sort-of tried this mode before, but never really investigated it with the manual until this patch. Like when I actually RTFM while using The Dradds in the Tape algorithm, I was immensely happy with the result. Understanding your instrument is key. As synthesists we can happy accident our way into nice sounds regularly. But you can’t really compose with the hope that your knob twists will land you where you want to go. Just as strumming away on a guitar, or pressing piano keys doesn’t create something musical, you can’t really get music from a modular until you know which knobs to turn and when/how much to turn them. For this patch I chose to scan each buffer using a chaos signal from Frisson. This was nice movement, but the scarcity of notes feeding The Dradds meant that sometimes there was nothing in the short buffer to scan, or so little that it wasn’t scanned while it was in the buffer. This served to keep the Dradds from becoming too busy and overtaking the patch, but I would have liked more from The Dradds at many points.

The last effect used (besides reverb on the entire output) is the aforementioned Endless Processor. I hadn’t used this module much before. Not because I don’t think it would add a beautiful dimension to my patching, but because of unknown reasons that had me patching other FFT-like modules instead. The Endless Processor is a very simple module that does just one thing: it analyzes the frequency and level information of incoming audio, and endlessly sustains an average of that audio until you clear the layer. You can clear layers, or replace them with new audio, but ultimately the Endless Processor is a very simple instrument. It’s perfect for drones or making chords. It’s perfect for creating air in your patch, or filling space and creating texture. You can even use this module for stabbing techno chords.

But simple doesn’t mean easy. Capturing the exact sound you want, particularly at lower Memory times, can be challenging. You don’t always get the capture you hoped for (something that happened during this recording), and sometimes you get a capture that sounds downright bad. Today was my first day with it, so I think I can forgive myself for getting “meh” results in my first recording with it. I can only discern one capture, though I was pretty sure I did at least four of them on layers one and two. My initial goal was to have both channels of the Endless Processor float back and forth in the stereo field at different rates, but with only one sound being audible it’s pretty awkward, especially with as loud as it is. Clearly, I need practice.

Overall I really enjoyed creating this patch. Chaos is always fun to use in whatever capacity I use it. The Natural Gates shines again. The Echofix tape delays, brilliant. The Dradds doing Dradd-y things. My hope is to really work with the Endless Processor, as I can absolutely see just what a boon it could be in my practice.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Frisson
Nonlinearcircuits Numberwang
Nonlinearcircuits De-Escalate
Synthesis Technology E370
uO_C (Quantermain)
Pladask Elektrisk Dradd(s)
Blukač Instruments Endless Processor
Rabid Elephant Natural Gate(s)
Calsynth Changes (MI Stages)
AI Synthesis 018 Stereo Matrix Mixer
ST Modular Sum Mix & Pan
Intellijel Amps
Knob Farm Ferry

Outboard Gear Used:
Echofix EF-X2
Walrus Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. I actually identified a whole lot of modules that have been underused, and am making a plan to use them, or sell them. ↩︎
  2. As much as I like the De-Escalate, it would be a much easier tool to use were the jacks to one side and the knob on the other. Input-Knob-Output is a horribly patching orientation for minimizing spaghetti. ↩︎

Stochastic Waves

I’ve used all kinds of slow modulation sources in my patches. Wave simulators, chaos, and slow, free-running LFOs are all staples in my modular practice, and I’ve used all of them as the engine that drives an entire patch. But one thing I’ve never tried in a lead role in a patch is good, old fashioned random modulation. Sure, I’ve used sample and hold or smooth random generators like the Frap Tools Sapél, Mutable Instruments Marbles, or Make Noise Wogglebug for specific tasks within a patch, but outside of Marbles > Rings-type patches, I’ve never based a patch on staochastic movement before.

Random is, well, random, and it’s hard to be intentional when you can’t really expect what’s going to happen next. In some circumstances, that unpredictability is perfect. In other cases, it just makes a really big mess. There are certainly ways to corral in a random signal to fit within particular parameters to allow for more predictability. That’s the basis of stochastics. Sapél has a range probability knob which directs it to choose output values predominantly from a particular range. Marbles has a switch for voltage ranges. Wogglebug similarly has a mechanism for more or less drastic changes. You can even hone random voltage in on your own with a little offset and attenuation. But it’s still random, and even if completely random might work for certain facets of a patch, using it as the main driver becomes difficult while still remaining musical.1 But I was determined to make it work, and I had just the module to help.

The Addac506 Stochastic Function Generator is a powerhouse modulation source made up of four function generators, and most of the bells a whistles one could want. Need cycling envelopes? Check. Slew limiter? Check. One shot envelopes? Check. Audio rate to very slow? Check. EOR and EOC trigger outputs. Check. Offset and attenuation to get your generated functions in the exact range you need it? Check? Some comparator action for related modulation? Check? And this checklist of features goes on and on. But the killer app of the Stochastic Function Generator is its ability to set a very precise range for both Rise and Fall times. This ability allows for some very compelling modulation that changes every cycle, but, particularly when using very slow modulation, does so organically in a way that seems transparent. It can be set to no random generation (standard envelopes), a very wide range with wildly changing Rise and Fall times, or a very narrow range where changes are subtle, and each of these can be done in three modes, slow, medium, or fast (per generator). The Addac506 is a very powerful module with a compelling feature set that can drive entire patches.

I had set out to make another E370 patch using slow modulation to fade the four wavetable oscillators in and out to create a cloud of a chord that is constantly shifting, yet still always the same. I’d been using slow moving bipolar signals for this purpose on several patches of late, but I wanted to try something a little different this time around. I’ve used chaotic systems, and I’d used both free running and synced LFOs, but I’d had problems using cycling unipolar functions in the past because no voice is ever truly out for very long. It’s a constant chord where each note changes volume, but is almost always audible. Mystery, drama, and tension are minimized; each note like a yo-yo rather than a graceful flow in and out and back in again. But the Addac506 is a little different. Unlike most function generators, with the Stochastic Function Generator you can tailor the outputs to any range you want. Those functions needn’t be unipolar, nor with wide ranging levels, and the ability to offset and attenuate signals allows one to shape your function to suit your destination without issue, and it’s this ability to perfectly condition CV before ever leaving the module that enabled me to use it in this slow fading movement I was looking for.

Setting the stochastic functions on the Addac506 is simple: set minimum and maximum Rise and Fall times, and call it a day. At the instantiation of every cycle both Rise and Fall will receive a random value between those set minimum and maximum times, and that stochastically determined envelope will come out. Flick the cycling switch and every cycle is something different. And the Addac506 gives us that, times four. It should be noted that this behavior can be replicated in any function generator that has both End Of Rise and End Of Cycle gate/trigger outputs, plus CV inputs to control the rise and fall times independently. You’ll need to add in a sample and hold or random voltage generator, plus a module for offset and attenuation to define the range of random. All this times four is a lot of patching, and a lot of modules. The Addac506 does it all seamlessly under the panel.

At first I was a little confused. Although I hadn’t initially set any offset, the output was still silent until the voltage as somewhere between 1-2 volts.2 I had anticipated needing to use negative offset to create some space between the fading out of one wave and when it will become audible again, but instead found myself using positive offset to get the flow I was after. Fortunately the flexibility of the Addac506 allowed for quick and easy adjustments to put each wave in the right zone. I added a fair amount of positive offset to the bass note of the chord so that it was always audible, while still having level changes to keep it moving. The other three oscillators used a very slight positive offset. Combining their need to get to somewhere between one and two volts before becoming audible, with the very slow nature of these ever-evolving functions determined the use of positive offset. Up to 40% of their positive range was already inaudible. Giving the functions a bit of a voltage floor rise was in order, lest far too much silence ensue.

Having already decided on my four oscillators for this chord soup, the quad wavetable oscillators of the Synthesis Technology E370, and having had the level control roughly framed out, it was time to look at modulating the wavetables to create movement within each note. The pitch of each oscillator would remain static, and to accompany the change in level, a change in timbre is natural (especially with a morphing wavetable oscillator). Having already used up the outputs of the Addac506, I looked to a familiar module, and one right next to the Stochastic Function Generator, the Addac508 Swell Physics.

Although Swell Physics is definitionally a chaos-based system, and not a random one, the uneven flow up and down of each output was perfect for the job. The bass note oscillator received modulation only on its Detune CV input, while the other three oscillators received both Wave and Detune modulation, the former from Swell Physics and the latter three free running sine wave LFOs from Batumi II. The triangle wave LFOs from Batumi II were used to pan these same three signals slowly through the stereo field with the ST Modular Sum Mix & Pan, while the bass note was planted firmly in the center. Once mixed down to stereo, the four oscillator cloud went to the AI Synthesis 018 Stereo Matrix Mixer.

Once in the matrix mixer it was time to smooth out some of the rough edges with the Holocene Electronics Non-Linear Memory Machine, a favorite of mine since it went in the rack. As a non-clockable delay I found it a wonderful tool for long, drawn out ambient delays, especially with how it can smear repeats into an almost reverb-like sound. Although I tend to pretty heavily modulate the NLMM, I chose to go with no modulation in this patch, with smearing at about 12 o’clock on the knob, and feedback at around 11 o’clock. The NLMM was mixed with the dry signal in the matrix mixer at about a 50:50 ratio, and perhaps even favoring a bit more delay than dry signal.

This mixed signal was sent to both the output mixer and The Dradds for some broken tape machine treatment. Both sides, left and right, or light and dark as it exists in my case, were set to Tape mode at an octave up, with each side behaving slightly differently. The left side tends to randomly switch between forward and backwards playback at double-speed, while the right side randomly switches both direction and speed, although both sides were lightly modulated and sometimes change temporarily. Although I’ve always been enamored by the Dradd(s), it wasn’t until I really started to learn it have my results been what I was always hoping for. Since I sat down to really understand the Dradd(s), my patching has had an opportunity to be more intentional, with my results more satisfying and effective. Plus, having dual Dradds for a stereo field really maximizes the movement and variation it creates.

The Dradds, good and evil.

A heaping portion of distortion, courtesy of the Bizarre Jezabel Mimosa, was also used towards the end of the patch, which created occasional blips and stutters, and a sense of heavy drama. It was only used on the chord cloud and the Dradds, and even then I chose to keep a fair bit of the original dry signal in the mix. I really like the resulting sound, but something is happening that I don’t quite understand. As distortion was introduced into the mix, I did not lower the dry signal. I would have expected the volume would rise, yet it didn’t. The volume got lower, even once the dry and wet distortion signals were nearing full volume in the matrix mixer. It wasn’t until I started to lower the dry signal (the chord, its delayed signal from the NLMM, and the Dradds) that the overall volume started to become louder. My guess is there is some form of phase cancellation happening, although I don’t really know what phenomenon might explain it. You can hear it starting at about the 10 minute mark, with me starting to lower the dry level at about the 11:22 mark, which corresponded in a total output level rise. Curious, that.

Although I was quite happy with my shifting chord after a whole lot of tinkering with envelopes and CV input attenuators, I knew something was missing. I had blips of granular synthesis to break things up, but it needed more. I was hesitant to use SD Multisample as I’ve done a lot of that, but wanted something in a similar vein. Reaching back to one of my very first patches, an attempt at creating a wind chime-like sound and pattern, I decided to add in a randomly created, toy piano sound (or baby R2-D2 sounds as my oldest relayed ). I really enjoyed making that patch when I did it the first time around. It was the first patching technique I’d ever figured out on my own, and a sense of nostalgia pushed me over the edge, even if only to see if I could remember how to replicate it.

This part of the patch started at the Stochastic Function Generator’s “Average” output. This output was patched to the input of the Joranalogue Compare 2. When the Average out from the Addac506 was inside the comparator window, it spat out a gate to the cycling input on a Frap Tools Falistri. While the function was cycling, the End Of Cycle gate triggered Sapel and Quantermain. Sapel sent a value from the N2 output to both Quantermain, in order to send quantized pitch CV, and the Decay CV input of Falistri that would change the envelope length with each note. The VCO changed pitch, and the cycling envelope opened the VCA, each note with a different pitch and length. The sound went from the first VCA to the output mixer, as well as a second VCA which panned the signal to two separate delays, which were then mixed and sent to the output mixer to be mixed with the dry signal and the rest of the patch.

Although the method I ultimately used in this patch is very different than the first time around, the results are similar. The sounds are much higher in pitch, much faster, and much shorter than my original version, but the theory behind creating the sounds was the same, even if I took a different route to get there.3 I wanted short, uneven bursts, and I got them. It’s quite often these days that I realize there are many routes to the same end. Overall, this part of the patch played a very minor role, but an important one. After several listens, I’d probably integrate this part differently were I to do it again. I’d definitely have it more forward for most of the mix rather than hanging around the background. It seems to get lost sometimes, when it should be more prominent. I would also not mess up a patch connection with my second delay, the Qu-Bit Electronix Nautilus, where I plugged into the Right input, and not the left, which, with the feedback pattern chosen, put virtually all of the delay signal from Nautilus on only the Left side. Some might not even notice, but it bothers the shit out of me.

The last part of this patch is the periodic “bubble burst” with accompanying echoes (courtesy of the Xaoc Devices Sarajewo). I stole this idea straight from one of my favorite patches on the Make Noise channel. It’s a simple sound that is both unobtrusive, and only very periodic. The sound was created by pinging (ringing?) CUNSA, which also had its frequency modulated by the highly attenuated HP output of the same filter (another trick I stole from Make Noise – Thanks, Walker!). It was triggered by using a Stackcable to combine three separate gate outputs from the Stochastic Function Generator. These long functions output only very periodic gates at a random interval, so there’s no overcrowding. It also helped provide a sense of scale and depth of the musical space.

Everything ended with a round trip through the Walrus Audio Slöer, which is quickly becoming my favorite reverb. Although I’ve tended towards one of the pitch shifting algorithms, I ultimately decided on using the Dream algorithm, though the Rain algorithm also sounded nice.

I really enjoyed this patch, even if there are a few things I would definitely change. It was both challenging and highly rewarding. It offers answers to some questions, but also to more questions to explore in a future patch.

Modules Used:
Addac506 Stochastic Function Generator
Addac508 Swell Physics
Synthesis Technology E370
ST Modular Sum Mix & Pan
Frap Tool CUNSA
Frap Tools Falistri x2
Frap Tools Sapél
Joranalogue Compare 2
Befaco/DivKid Stereo Strip
Calsynth uO_C (Quantermain)
Bizarre Jezabel Mimosa
Knob Farm Hyrlo
Venus Instruments Veno-Echo
Qu-Bit Electronix Nautilus
Xaoc Devices Batumi II
Xaoc Devices Samara II
Xaoc Devices Sarajewo
CuteLab Missed Opportunities
Holocene Electronics Non-Linear Memory Machine
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

  1. Although what is or isn’t “musical” is certainly subject to wide interpretation, I think we can still make useful generalizations, while drawing lines between something most would call musical, with yet other examples most would call sound(s) or noise. ↩︎
  2. I’m not sure, but I suspect that the VCA/mixer I was using to process the audio has a logarithmic response, delaying its response with slow(er) signals. The manual doesn’t illuminate the VCA topography, unfortunately. ↩︎
  3. After looking at a patch diagram of the original patch, the methods used between these two patches was quite different, even if it started similarly. It’s nice to know that there is generally more than one way to accomplish some patching goal. ↩︎

Day 3 – Sailing Through The Clouds

The first night at sea was as eery as I can remember seeing on the water. Like a scene from a dreamworld that was real, but didn’t always seem like it. Like we were traveling between realms. I won’t claim to be some long travelled seafarer, but, having grown up by the ocean, I’ve spent a good amount of time on the water in my life. I’ve been in ocean faring boats on three continents and three oceans from the tropics to the arctic. But one thing I’ve never experienced while on the water is The Marine Layer. I’ve seen fog, even bad fog, but nothing could really prepare me for the enveloping marine layer clouds. It was the kind of dense cloud soup that, in another age, might have been the demise of a ship unable to see any navigation markers whether on the land, sea, or in the sky. The only thing visible in the gloom was the sparkling refraction of the ship’s fog lamps, and the sea rolling off the hull as we slowly made our way through Puget Sound and out to sea. The ship’s fog horns blasting every few minutes, and gentle splashing against the hull 80 or so feet below us, the only things to be heard. The entire experience left a lasting impression.

I spent much of that night and parts of day two scouting the ship for someplace that would be a good spot to whip open a modular synth case later at night. I wanted to be as out of the way as I could, but still in a spot that has adequate electricity to power the synth and a small USB hub connected to my iPad, the Michigan Synth Works XVI, and a small 4-channel headphone amp I bought in a lieu of a passive TRS splitter for using with more than 1 person (I loathe not having individual volume control).. Although I ultimately found a couple of good candidate spots, but this first recording I made during some morning downtime in my cabin before arrival at our first port of call. I wanted to give a full test run of the equipment in my room before lugging it down nine decks, the full width of the ship, and nearly its entire length. The setup is not terribly complicated, but it can be fussy, and I didn’t want to waste time futzing with gear in a communal space.

For this first run of the full use of this synth with all of its accompanying support gear, I wanted to use a familiar patch so as not to become overstimulated if I were to encounter problems with my other gear. I spent the better part of two weeks pouring over a patch with the Addac Systems Addac508 Swell Physics and RYK Algo that I quite enjoyed making, and so decided to go with that same approach using the Humble Audio Quad Operator. The four Swell Physics wave outputs to the four operator VCAs (Gain 1-4) to slowly bring their individual voices in and out with the flow of the ocean. This goes straight to the mixer, operators one and three panned left, with operators two and four panned right, where it’s then sent to a reverb bus using the beautiful Blue Mangoo Stratosphere Cloud Reverb.

Three of the Swell Physics outputs also provided the source for pitch CV used in the second voice. In another bid to patch something familiar, I once again used chaotically generated gates with the NLC Stochaos, alongside Disting Ex’s SD Multisample algorithm, this time using LABS Music Box samples. As in my test patch at home, I again used a tempo modulated Sitka Gravity to have the clock float above and below the base tempo of 72bpm. If I were just a bit smarter, I would have thought to use one of the four wave outputs from Swell Physics rather than a random LFO from Batumi II.

The Toy Piano samples output to the Qu-Bit Electronix Nautilus for some delay and with gradually introduced bit crushing in the feedback path. The delay is set fairly slow, with light modulation to Reversal, Feedback, and Dispersal. In a roughly 50/50 dry/wet mix, the Nautilus outputs go straight to the mixer, and are sent to the reverb bus.

The last portion of the modular is an approximation of the ship’s blaring foghorn. I’m using Plaits in (I think) FM Synthesis mode, using the Doboz T12 touch controller to manually play the note. It’s only used three or four times through the ~7 minute recording.

This patch is the first I can recall making where I’ve used post-production processing rather than playing everything live. This synth is limited, and so is time to create patches. Before I left on the trip I knew that my synth was without one of my staples: a granular processor. Earlier revisions of the case had a Mutable Instruments Beads, but it was eventually lost in favor of something else I can’t remember. I do know that I while I was building the synth I was insistent on several modules having a spot. The Addac Swell Physics, Qu-Bit Nautilus,1 Doboz T12 + 3hp module of choice (I chose the Klavis Tweakers), Expert Sleepers Disting Ex, uO_C, CalSynth Changes (MI Stages), Sitka Gravity, and the Humble Audio Quad Operator were non-negotiable for me, despite a couple of them being large for a case this size. But Beads didn’t make the cut because I found an excellent granular processing plugin for iPad, Fluss, by Hainbach and Bram Bos. It can function as a granular instrument, granular sampler to record and process longer samples, or a live granular processor with a 6 second buffer. Because it’s the behavior that most closely resembles Beads, I’ve only used it in live mode, and I can say that I really like it. Because it’s a live processor Fluss is a good substitute for Beads, and despite being a plugin, it leverages the iPad touch environment well, being a very hands-on, playful interface. Sliders and discs can be flicked around, the effect frozen, manipulation of the three voices, and more are all easily accomplished with touch gestures. Fluss also speaks fluent midi, and can be used with hardware controllers should you want even more manual control.

After recording the modular, I played the recorded file in AUM through an effect bus with Fluss as the plugin, with yet another send from the Fluss output to the Blue Mangoo Stratosphere Cloud Reverb. I mixed the original recording with the granular processing and reverb, and recorded that mix, which is what we have here.

I’ve been using AUM as a final mixer for quite a while with my modular. The way my main synth is set up now, I can’t even listen to it without plugging it into my iPad with AUM. An Expert Sleepers ES-9 is my only output module in that synth. Until recently I’d basically been using it as a very basic mixer. Most of the time it would be a simple stereo input mixed in the synth, primarily via the AI Synthesis 018 Stereo Matrix Mixer, while using one send/return bus to go out to a reverb pedal before final mixing. But as I prepared for this trip, knowing I’d need to use plugins in ways I generally don’t, I started making more intricate mixes, utilizing various sends from several input channels to effects plugins and the output bus. Although I haven’t (yet) recorded multitracks on this trip, AUM is certainly set up to easily to do so. Since I haven’t done much post-processing, I haven’t felt the need to, though that may change as I learn to better leverage a mixed hardware-software environment. I’m not terribly interested in moving in the box, but if a plugin has a touch driven interface that’s playable, like Fluss, there’s no good reason to avoid it since I’m already using AUM as my mixer.

Modules Used:
Addac Systems Addac508 Swell Physics
Humble Audio Quad Operator
Mutable Instruments Plaits
Mutable Instruments Veils
Expert Sleepers Disting Ex (LABS Music Box)
CalSynth uO_C
Nonlinearcircuits Stochaos
Sitka Instruments Gravity
Qu-Bit Electronix Nautilus
Intellijel Amps
Xaoc Devices Batumi II + Poti II
Doboz T12

AUv3 Plugins Used:
Bram Bos / Ruismaker and Hainbach Fluss
Blue Mangoo Stratosphere Cloud Reverb

Modular synth performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9. Granular effects added during post processing in AUM on iPad.

*****

  1. Yes, both the Swell Physics and Nautilus were chosen specifically for their oceanic themes. An early revision of the case also had the Qu-Bit Aurora, which would fit the destination too, but it was substituted out early on during the revision process for something more practical like VCAs or modulation.

Stochaotic Bubbles: Effervescent Chaos Up And Down

Since I’ve recently received several modules, I’ve been using them rather heavily of late, and they’ve kind of taken front and center. The Nonlinearcircuits Stochaos and Humble Audio Quad Operator are featured in many of my recent patches, and this is no exception. I wasn’t sure, exactly, what I wanted with this patch, but I knew I wanted a chaos clock that was moving fast. I wanted lots of gates firing quickly, and use those gates to hit 4 separate LPGs, this time a pair of Tokyo Gates. Then I knew I wanted these quickly firing notes to be heavily delayed, and sent to a resynthesizer to fill in space and give something for those quickly firing notes and repeats to swim in. I wasn’t imagining bubbles when I first started, but that’s what I kept coming to as I was fiddling with the patch, and after a while leaned into this theme a bit to see where I could take it.

Getting a fast chaotic clock was the easy part. I’ve been using chaos-based clocks almost exclusively for a few months. I don’t mind a grid, but most of my creative inclinations are more towards malleable textures, and chaos provides an almost perfect ebb and flow. At slow tempos it’s definitely noticeable, but this patch was to be clocked at a very high rate; perhaps even approaching audio rate, and those differences at high rate are much less noticeable As per usual, I sent the modulated chaos signal to Divide & Conquer, before sending a fast division to Stochaos. From there the chaos-generated gates would go to the CalSynth Changes to create some snappy decay envelopes that would hit the CV input of four separate Tokyo Gates. The outputs of the Tokyo Gates were mixed into 2 signals in the Mutable Instruments Veils, and finally sent to the AI Synthesis 018 Stereo Matrix Mixer.

The audio is from the 4 operators of the Humble Audio Quad Operator. Although I initially experimented with tweaking the wave shape of the operators, several times, actually, I settled on sine waves. I also tried to work in some FM, but I couldn’t find exactly what I was looking for, which is likely because I was using all 4 operators as carriers, rather than trying to use just a couple of the oscillators as carriers, with the others acting as modulators. It’s tough to get oscillators to behave when you have lots of cross frequency modulation happening. Generally it’s pretty pedestrian as far as the audio source, but there are so many individual notes that are echoed so many times that anything much more complex might be a wall of sound rather than something more enunciated.

The pitch signal is taken from a slow chaos wave through Xaoc Devices Samara II for some careful offset and attenuation before going to uO_C’s Quantermain for quantization into D minor (even if I have no idea what the oscillator is actually tuned to), before being sent to the v/oct input on the Quad Operator. That accounts for the generally up and down nature of the pitch progression. It’s also a good example on how chaos operates. It’s steady-ish, but there are definitely times when the chaos deviates from its path. Sometimes that means speeding up or slowing down. Sometimes that means direction reversals. Sometimes it means lingering at some pitches longer than others. You think you know what’s going to happen, but then the chaos surprises you, providing something interesting. Even still, I feel like there is too much of the same thing when it comes to the pitch in this patch, but since it was more an exploratory patch I think I can forgive myself.

I recently became aware to the dismal fact that my main synth, a large set of separate subsystems that comprises 1,560hp and that has another 588hp in interchangeable subsystems, did not have a vactrol-based LPG in it. Despite having several vactrol LPGs from the Make Noise LxD and Optomix, to the Nekyia Sosumi, and still more, not a single one was in my main case. All of them had been moved to either my Make Noise Satellite Subsystem, or else my Side Case. I have plenty of non-vactrol-based LPGs like the Rabid Elephant Natural Gate, Bard Synthesizers VTG, Frap Tools CUNSA, and Verbos Amp & Tone in the main case, but not one vactrol LPG. As soon as I came to this realization I knew that it couldn’t stand for a single moment longer, and moved a pair of Tokyo Tape Music Center Tokyo Gates from my side case back to the main case. I’d get 4 channels of my favorite vactrol LPG to go along with all of the additive-style oscillators I tend to gravitate towards. Three Body, Quad Operator, Algo, Mob of Emus, and many others besides pair so naturally with a LPG that it seems boneheaded to not have them ready for the occasion.

I’ve liked LPGs for a long time. My first foray was via the Make Noise Optomix, which quickly led to several others, both with and without vactrols. I like both types, but it’s the non-exactness of vactrols that really draws my ear. They can be a little sloppy, particularly when hit repeatedly with a gate or envelope. Vactrol-less LPGs like the Natural Gate or DXG too sound great, but there’s something about their precision that doesn’t feel the same as with vactrols. It’s almost too perfect, and too repeatable. I also feel that vactrols bleed prettier, which is a patching technique I love to use. I don’t know whether I was insistent in using vactrol LPGs in this patch because I thought they’d be best, or because I had just put four of them back in my main case, but I decided on using the venerable Tokyo Gate.

Even if I don’t use Tokyo Gate very often, it is my favorite of the vactrol LPGs I’ve had. Its decay is adjustable (to a degree) with the Bridge control, pleasant, and even can have a little squelch of resonance if you pin the Bridge knob full CW. Although you can directly ping Tokyo Gate with a trigger or gate just fine, I’ve found that envelopes generally sound more pleasant to the ear. There’s a harshness with slamming a gate into that isn’t there when using a well shaped decay envelope.

In this patch, because I was using sine waves, the Tokyo Gate probably performs not much different than a regular VCA. There are no harmonics in a sine wave to reveal and hide again as the filter also goes up and down with the volume, but you still get that vactrol decay which can’t really be had with anything else. I also liked the perceived sloppiness of the vactrols as they were being repeatedly hit by envelopes. All of the chaos-derived gates flying about in rapid succession, triggering short, snappy envelopes started to resemble four separate telegraph signals flying about in space.

And although the effect of four vactrol LPGs pinging away was pretty cool, I knew that I wanted a lot more of it by using delay. These pings were the start, not the end. Far from it. Rather than using one delay like I normally might, I opted to use two of them in parallel.

Delay number one was the Venus Instruments Veno-Echo. Its reverse function per channel was being modulated by chaos-derived gates from the very slow end of the Divide & Conquer. Since the original chaos clock signal itself was running quite fast, even very low divisions would trigger too frequently for me, and decided to run those gates through the CuteLab Missed Opportunities gate probability utility that I tend to use in most of my patches.

The second delay is the Olivia Artz Modular Time Machine. Using various delay taps would ensure the effervescent feeling I was getting as the patch started to take some shape, spraying delays all about the stereo space. Besides creating that bubbly feeling I was now striving for, the Time Machine is also the source audio for the Qu-Bit Aurora resynthesis module that fills in the gaps and helps create something thicker for those bubbles to float in.

Altogether we have the feeling of bubbles floating around space. One thing I might try in a future patch like this is to use the pitch as CV for the clock rate. As the pitch changes, so too does the clock, creating more gates with higher pitched bubbles, and fewer with lower pitched bubbles. I’d also be a bit more inventive with my pitch sequence as well. This is just a chaos signal triggering Quantermain as it moves through from note to note in the selected scale. Even if I want to use chaos as a source for pitch, in order for there be some quality pitch movement I’d be better off using one of the chaos derived gates to trigger the quantizer via some labyrinth of gate probability, logic, and/or a Bernoulli Gate.

Altogether there isn’t anything special about this patch other than it was experimentation throughout. Experimentation with chaos as pitch. Experimentation with extremely fast gates with vactrol LPGs. Experimentation with delay taps to get a good feeling of watching bubbles in a freshly poured glass of Coke. Experimenting with parallel delays. Experimenting with Aurora.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Divide & Conquer
Nonlinearcircuits Stochaos
Nonlinearcircuits Triple Sloth
Xaoc Devices Samara II
CalSynth uO_C
Humble Audio Quad Operator
CuteLab Missed Opportunities
CalSynth Changes (MI Stages)
Mutable Instruments Veils
Tokyo Tape Music Center Tokyo Gate
Olivia Artz Modular Time Machine
Venus Instruments Veno-Echo
Qu-Bit Electronix Aurora
Knob Farm Ferry
Vongon Ultrasheer

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

Chaos Organ: A Quad Operator Experiment

Hi, my name is Chris, and I’m a chordaholic.

Lately I’ve been in a polyphonic mood, attempting to find evermore methods of creating chords and chord sequences with the modular synth. Using a DAW for this sort of thing is child’s play, but in modular synthesis, creating polyphonic chords isn’t a straightforward task most of the time. Most oscillators can only output one pitch at a time, and using multiple oscillators can create timbre mismatches. Tuning 4 or more oscillators to the same pitch while not suffering from pitch drift over time is a chore and a half. Sequencing chords in a traditional modular sequencer can be a mission rife with potential problems, and you don’t always want the repeating uniformity of a sequence, but something more organic. In short, modular synthesis is traditionally a monophonic enterprise, with only a small handful of monophonic voices being used together. A melody, a bass line, perhaps something else to fill in space, and some effects to create a stereo space. Full on chord generation isn’t common because it’s a tedious exercise that generally requires a lot of gear and even more patience. But over the last couple of years this is beginning to change. Although there have always been ways to create chords and chord progressions in modular synthesis, it’s not until relatively recently that we can more easily create chords. Oscillator banks like the Xaoc Devices Odessa (with its expander, Hel), Humble Audio Quad Operator, and RYK Modular Algo, and chord sequencers like the NOH-Modular Pianist make composing with chords on the modular a much more efficient and simple process.

In a previous patch I used the very excellent (and recently updated) NOH-Modular Pianist to create chords that were triggered by an irregular chaotic gate pattern. Although I am generally psyched about how that patch turned out, there are still a couple spots of ugliness that appear due to a bad match of back-to-back chords in the progression. On their own they sound fine. But once smeared out by the delay, FFT resynthesis, and reverb, there is some clashing that happens, creating some ear-cringing dissonance. I wanted something cleaner, and I didn’t want to have prescribed chords, but something that could change organically with a bit of modulation, without the worry of a spicy note peeping its ugly head in. Enter Quad Operator.

The Humble Audio Quad Operator is a bank of 4 oscillators that can be tuned to harmonic and subharmonic ratios of a base pitch. Tune the base pitch to your liking, then simply adjust the ratios of each operator, and you have oscillators that are all harmonically in tune. Patch in a single v/oct signal, and all 4 operators will move along in harmony. The Quad Operator is primarily designed as a the ultimate FM oscillator with any traditional FM algorithm possible, along with any other combo of modulator/carrier you can imagine. But with each operator being independent with its own output (both in a mix and independently), using it as a complex chord generator is a very happy side benefit. Input a single v/oct signal, output always-harmonically related chords. Add in some modulation of a couple of the operator’s ratios, and not only will the chords always be harmonically relevant, they’ll also quite often be different (even if the base of the chord is the same). For modulating the ratios I used both the Nonlinearcircuits Stochaos and the Auza Wave Packets.

There are lots of methods for getting a nice v/oct signal. Sequencers are the obvious solution, but with a quantizer any signal can be a used for pitch. S&H is extremely popular, but random pitch is only slightly less boring than patterns repeating themselves over and over in the exact same way. One solution is to use LFOs alongside triggers to create melodies or arpeggios. Envelopes work great too. But I wanted something a smidge different. LFOs and envelopes repeat themselves by nature. Unless modulated, an LFO or envelope is the same up and down every time. This regularity can be mitigated by irregular triggers, but then it starts to veer towards random, which isn’t really what I’m after. Enter chaos.

In my post, Chaotic Gates, I explained how chaos signals are regular-ish. They take the same general path on each pass, but some unknown irregularity in the feedback path will shift it off course in a non-regular way. These signals are kind of regular, but enough differences come about that there are always surprises. I mostly use chaos as a modulator of some kind. Opening and closing filter cutoffs or wavefolders, slowly modulating level, timbre, or some other facet of a patch. Today I would use it for pitch.

In most circumstances I would use triggers alongside my CV input with a quantizer. Send off a trigger, and whatever voltage is present at the quantizer’s input is sampled, quantized to the nearest note of your chosen scale, and output to the v/oct input on your oscillator. But some quantizers can function without a corresponding trigger, sensing voltage changes, and quantizing automatically once it detects a change large enough to be a separate note in the scale. Quantermain, the quad quantizer algorithm on the ever-useful Ornament&Crime, has this capability, and I decided to give it a whirl. It should be easy enough. Shove in a chaos signal, get quantized pitch CV on the output. And by and large, it was that easy. I knew I wanted fairly slow chord changes, so I needed a slow(er) moving chaos signal. After a bit of attenuation of the chaos signal to reign in the range, I was getting exactly what I wanted. Irregularly moving chords that shift at irregular speeds and that have irregular movement both up and down.

But chords themselves, cool as they are, need embellishment to be interesting. For effects, I sent the chords, via the stereo matrix mixer, to the Qu-Bit Nautilus for some smearing with low pass filtered delay, before going to the Instruo Arbhar. My initial plan was to have some shimmery granular action floating on top of the chords, but I could never find what I was hoping to get. Instead I found a happy accident of harmonically relevant dancing grains that moved to a rhythm.

These dancing grains, although not at all what I envisioned when I set out on this path, turned out being perfect, giving a sense of life inside the thick chords. Like minnows in a lake, or lightning bugs in the night.

Enjoy!

Modules Used:
Nonlinearcircuits Triple Sloth
Nonlinearcircuits Stochaos
Auza Wave Packets
Humble Audio Quad Operator
ST Modular Sum Mix & Pan
AI Synthesis 018 Stereo Matrix Mixer
Qu-Bit Electronix Nautilus
Instruo Arbhar
CalSynth uO_C
Knob Farm Ferry
Mutable Instruments Blinds
Oto Bam

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.


0:00
0:00