During one Jamuary patch, I had the pleasure of using the Alexandernaut Fugue Machine Midi sequencer extraordinaire. I enjoyed it so much that I sought a MIDI > CV converter so that I could bring that particular brand of magic into my synth. Sequencing is easily the most challenging part of eurorack for me. I’m quickly learning that, at least in the immediate term, “battleship” sequencers and me don’t work well together. The options are oftentimes overwhelming and programming them can be a constant exercise in frustration. When you’re trying to play a polyphonic patch, these frustrations compound as the patch gets more and more complex. Of the large sequencers I’ve used René v2 is easily my favorite. I find it to be the most intuitive sequencer I’ve used. The sequencer in the Doboz T12 is also easy to catch on, and the Verbos Voltage Multistage is ultra-simple. But I’ve done nothing but get my teeth kicked in by some of my larger sequencers. Frap Tools USTA, Oxi One, and 4ms Catalyst Sequencer in particular. Perhaps it’s the lack of effort with learning them, or that I simply quit on them too quickly, but nothing kills a moment like manual digging in the midst of a patch. Fugue Machine, even if it’s walled in its own very small box, is but one of many tools that make sequencing much less of a chore, and can help spark the creative drive to explore more advanced sequencing. Fortunately, there are good ways of leveraging MIDI tools in Eurorack.
I searched for a couple of weeks for my ideal MIDI > CV converter. My main consideration was for sequencing polyphonic patches, so it needed to have at least four channels of pitch CV, gates, and velocity. There are several options. One of the more compelling options is the Der Mann Mitt Der Maschine DROID. It’s a CV generating and processing powerhouse that can do almost anything that can be done with CV, including MIDI > CV conversion. I even have a DROID, and it has a killer feature set. If you can program it. It turns out that I can program DROID. It’s not terribly hard, even if I still do it by hand rather than using the GUI tool to create patches. But DROID would take more space, and would only be useful in this capacity, needing all eight CV outputs for pitch and velocity CV. So I kept searching, and finally settled on the relatively new Befaco MIDI Thing V2. I already have and use the Befaco CV Thing CV > MIDI converter and find it good at its job, even if the screen is not fit for middle-aged eyes. It’s only 6hp, and can sit right next to the CV Thing.
One of the MIDI Thing’s features is that it has 12 outputs. Exactly enough for four voices worth of outputs, and what’s more is that the exact configuration for my initial intentions with MIDI > CV conversion is already saved as a preset, or Pre-Def in Befaco-speak, for quick and easy input and output configuration. I simply set the MIDI Thing to “Predef 2: Multi Timbric” in the Global Menu and it automatically set the incoming MIDI channels to 1-4 and preconfigured the outputs. Pretty slick. Since I was already in for a lot of patching, I opted to forego using the velocity outputs. That wasn’t a step I was terribly interested in today. I wanted pitch CV and gates to trigger envelopes, and by golly that’s what I got after spending less than one minute in the MIDI Thing configuration screen.1
Once I had my MIDI routed in the AUM MIDI Matrix, and properly set MIDI ”Predef-ed” in the MIDI Thing, I fired up Fugue Machine. Since I was testing the functionality of the MIDI Thing and how that would work with a modular system, I wasn’t overly worried with an elaborate, or even original, sequence, and just used one of the included presets. Although I had played with the sequence length and transposition while running through the patch before recording it (which was all supremely cool), I simply forgot when I improvised the recording. I was more preoccupied with timing each channel, the levels of each oscillator, and crossfading the ending. As a result, this recording is a repetitive sequence. It doesn’t repeat exactly because of the modulation, but there’s no variation in anything other than oscillator timbre.
For oscillators I chose the always excellent Synthesis Technology E370, with a User-Loaded Wavetable titled NOV that was left from a previous owner. Thanks, dude. It’s pretty outstanding. Tuning each oscillator to unison (in Morph X/Y mode), I ran each of the pitch outputs from the MIDI Thing to the v/oct inputs. I followed that up by using the eight outputs of the Nonlinearcircuits Frisson to modulate both the X and Y parameters of each wavetable for all four oscillators. This constant timbre changing caused by the modulation also causes dramatic volume changes as waves morph in and out of more and less prominent waveforms in the table. I initially wanted something glitchy, and turned Glitch on HIGH with Interpolation Off for each of the four channels, and while it was cool, it didn’t fit at all in with the overall tenor of the sequence itself. The tonality is too “positive”, being in the key of A Lydian, and the sequence too upbeat. I suspect it would work fantastically on slower, more drone-ish material.
After I routed the pitch CV and modulation, I ran the gates to two Frap Tools Falistris for some enveloping. In addition to being enveloped at the Control inputs, three of the four gate outputs were also multed to the Hit input on one of two Rabid Elephant Natural Gates to provide some beautiful pinging of these ever-changing tones coming from the E370. All four channels were processed through Natural Gate, but only three were pinged. The bass note was only enveloped. In this process I made a grievous oversight. While Falistri is a perfectly good tool for this job, particularly the pluckier notes, more defined shaping with a ADSR would have really served the slower voices well. It so happens that I have perhaps the most advanced ADSR generator in Eurorack, but I didn’t even think to use it, and when I did, I was way too deep in the patch to re-patch and reconfigure the envelopes, so I let it go.
To be honest, I was expecting hurdles to cross, but I was surprised when it all just worked. CV did what it’s supposed to do. Gates did what they were supposed to do. Everything was perfectly in tune and on time.
Once the notes were created in their respective Natural Gate, all four outputs went to the ST Modular Sum Mix & Pan. While three of the four channels were panned to mono, the fastest moving and highest pitched voice was being slowly panned in the stereo field. The stereo output was then routed to the Addac814 6×6 Stereo Matrix Mixer, and sent to the Venus Instruments Veno-Echo. To ensure a solid clock for the delay, I used the now-defunct (or at least unavailable in the United States according to the App Store – which would seem weird) CoVariant Clock AUv3 plugin, which converted the MIDI clock in AUM to CV and sent it out an ES-9 output as an analog clock. I’ve never really sought to use a MIDI clock as the master clock outside of the iPad. I’ve certainly never used it as the master clock in a Eurorack patch. But this clock was flawless, likely to due CV being generated directly at the source, minimizing switches and pass-thru cabling or USB MIDI jitter. Hopefully CoVariant remains a working plugin in iOS for a while to come as there are currently no other direct MIDI > CV clock converters on the iPad. Veno-Echo was set at x2 on both sides with similar feedback just shy of noon. I also added a smidge of drive in order to enhance the sample reduction I put in the feedback loop. Veno-Echo, with its cross-feedback and width parameter, really can create an enormous stereo field
And so can the Dradd(s). It’s no secret I’m absolutely smitten by dual Dradd(s). Despite this infatuation, my first instinct was to patch in Beads, but Beads just didn’t really have what I was looking for today. At least I couldn’t find it. But the Dradd(s) did. In fact, I had to decide between two modes which both had something very cool to offer. I ultimately chose the Tape mode because the octave up was too much to resist. I slowly started to fade out the oscillators once the Dradd(s) were at full volume, and allowed its magic to guide the rest of the recording, fading out in a glorious wash of the Rain algorithm on the Walrus Audio Slöer.
When I set out to do today’s Jamuary patch I had initially planned on recreating, at least in spirit, a patch I did as a test for a travel synth during the summer. After setting up the piano portion of the patch, I changed my mind and decided against creating a sub bass sequence, or indeed using any distortion as I did in that patch. In part was because I was highly taken aback when, instead of plugging the piano output into the Qu-Bit Nautilus, as I did in that patch, I reached for the extremely lo-fi Bizarre Jezabel Quarté Mk2. The natural decay of the delay was plenty dirty in all the best of ways, and decided to go with it instead of introducing some other form of distortion. From there the patch went a very different direction. Rather than a sad yet hopeful tenor, this one is just sad.
For this patch I decided to use Stochaos as my gate producer for triggering the piano sounds, being fed by a chaotically controlled clock. I’m a fan of using chaos as a clock source. I’ve used multiple methods of using chaos to create off beat rhythms, from using Numberwang to running a chaos signal through Divide & Conquer, a clock divider than can use any signal as a clock input. Today I used, for the first time, the Nonlinearcircuits Let’s Get Fenestrated, a comparator NLC-style, fed by a heavily modulated The Hypster. This process created a perfectly ultra-wonky clock, which then fed Stochaos. Stochaos spat out four gates at the Disting NT inputs which triggered both the quantizer and the Poly Multisample player.
The audio was sent to the AI Synthesis 018 Stereo Matrix Mixer, and on to the Bizarre Jezabel Quarté Mk2 for some soul-crushingly beautiful repeats that seem to disintegrate as they decay away. I seriously contemplated just leaving the patch at that, adding in some reverb, and calling it a day, but I knew that I could add to it subtly and give it some more life. To give it some other textures to contemplate and heighten the overall mood of the piece without distracting too much from the piano and those beautiful repeats.
I started with the Qu-Bit Electronix Data Bender, but I knew I only wanted to use that sparingly and didn’t think it would add enough by itself, so opted also to send the piano notes to the Dradd(s) for some good old fashioned time stretching. This was perfect and even allowed me to use the Data Bender even more sparingly so as not to overwhelm the Piano with failure. I slowly controlled the Data Bender output in the ST Modular SVCA with a modulated LFO from the Frap Tools Falistri. To modulate the length of the LFO I used an attenuated and slightly offset Smooth Random output from Sapel into the Both CV input. An inverted copy of the LFO was sent to a second SVCA which very slightly lowered the volume of the Piano and its repeats while the Data Bender did the thing.
The Dradd(s) add tons of texture with their medium-to-short grains, re-creating the piano at a slow crawl, filling in space and adding a layer of intrigue. Like a splash in water, the Dradd(s) created a distorted view of what’s underneath: slivers of sound overlapping and rippling off each other in a beautiful chorus. I’m still infatuated with the dual Dradd(s). I’ve used lots of granular processors in Eurorack. Of the continuous processing type, those that don’t rely on pre-recording to a buffer, but instead have a continuous buffer and don’t require recording a certain bit of material to process, I have a very difficult time choosing between the Dradd(s) and the Mutable Instruments Beads. It seems like I can always find something fascinating. That I can always use it to find something beautiful inside of the audio itself.
I haven’t felt as bad as I did today for a long while. I even called in sick to work, which is something I don’t generally do. It was hard to get motivated for Jamuary today, but, as usual, once I finally mustered the energy to turn the synth on, the rest of the world kind of melted away for a short time, even if today wasn’t destined to be a fully from-scratch patch.
Today’s Jamuary patch is a re-work of yesterday’s patch. My first inclination was to simply swap the effects on the piano and Panharmonium and call it a day, but the result wasn’t at all what I had in mind, so decided on using different effects entirely.
The base of today’s patch was exactly the same as yesterday. The four outputs from the Addac506 were split to Numberwang and Let’s Splosh, which sent gates and CV respectively to the Disting NT, which quantized the CV and passed it to the Poly Multisample algorithm that spat out audio.
The audio, via the AI Synthesis 018 Stereo Matrix Mixer, was sent to the Venus Instruments Veno-Echo for some slow repeats that were occasionally triggered into reverse using spare gate outputs from Numberwang. Both the dry and repeated audio were sent to Panharmonium, set to an octave down. Panharmonium is a magical module. It can sometimes be hard to tame, but when you finally find that sweet spot in a given patch, it has the capacity like few other things to gracefully fill up space and create a floating bed of awesomeness. Panharmonium was sent to the Dradd(s) in Tape Mode, each side played 2x speed, one forward, the other in reverse, with just enough feedback to occasionally shimmer upwards another octave. I’ve been absolutely amazed with the sounds I’ve gotten with dual Dradd(s). Of the many GAS-induced purchases I’ve made in modular, a second Dradd is amongst the best of those decisions.
The Piano/Veno-Echo, Panharmonium, and Dradd(s) were all separately sent to the output mixer for some reverb in the always lovely Walrus Audio Slöer.
Today was a much needed day off from work. After two long shifts in the cold, I was looking forward to taking my time while patching in my warm studio today. The last couple of days had been last minute jobs on the iPad, and I don’t like being rushed. The process was unsatisfying, and the outcome suffered. They’re not terrible sketches by any stretch, and absolutely gave me ideas for future use, but they just feel rickety and incomplete to me. Such is the nature of Jamuary.
As I was in the midst of discussion in a Discord earlier this afternoon, the conversation turned to the new 4ms MetaModule, a module capable of running VCV patches. A couple of others and I had chimed in voicing our preference for the also new Expert Sleepers Disting NT. I also mentioned that I needed to learn how to use the Disting NT, which set off a lightbulb moment. This is Jamuary, and I had planned to make a full modular patch today. I’d use this opportunity to learn better how to use the algorithm(s) which prompted the purchase in the first place, even if it can do so much more.
I have created a lot of patches over the last year that use the Disting Ex in Polyphonic Multisample mode. I love that mode, but the Disting Ex has a user interface only a mother could love. It has a lot of great features, but the screen is incredibly small which is tough on these almost-50 eyes, and the interface awkward. Each algorithm has a million options, and navigating to make changes is a hassle. So much so that I literally only ever used Disting Ex in Poly Multisample mode. The new NT promised a much bigger screen, a much friendlier interface, and that it could run several algorithms simultaneously. I wanted that superior interface, even if it couldn’t do anything more (which of course it can do a lot more). It’s totally possible to have a multi-voice patch complete with FX while only using output cables. It really is an incredible machine, but there is a learning curve. I wanted today to be about making my way up that curve, even if just a little bit.
I’ve only used the NT once. It was just before Christmas, and I had just received it. Between my brother and I, we were able to squeeze just a drop or two of juice from it (Day 2, Patch 2). I left frustrated, but not ready to give up on it, because that drop was sweet. But today was a bit different. Shortly before getting ready to patch, I watched an introductory video for the NT to see if I could find my bearings a bit, and learn better how to navigate it, and how to leverage using more than one algorithm at a time. After firing up the synth, I immediately starting digging through menus and setting up a simple patch, but with a twist. I would only run a quantizer into the Poly Multisample algorithm, but rather than a single gate and cv source, I would use four pairs of gates and CV, all to be quantized, and then sent via Aux busses inside the NT to the Poly Multisample which was set up to receive the quad set. Though programming wasn’t completely smooth, it went easy enough, and once I stumbled in the menus a couple of times, navigation eased, and programming came together exactly like I’d hoped without a hitch.
The patch started with four cycling functions from the Addac506 Stochastic Function Generator. The outputs were split and sent to both the Nonlinearcircuits Numberwang for gate generation, and Let’s Splosh for pitch CV. Four outputs from each went to Disting NT, with the CV being attenuated and offset with the Vostok Instruments Asset to varying degrees before going to the input pairs. Once the signals reached Disting, they were quantized into C minor, and passed on to the LABS Soft Piano sample library, before coming out of stereo outputs and directly into the AI 018 Stereo Matrix Mixer.
From the mixer, the Soft Piano audio was sent to the Holocene Electronics Non-Linear Memory Machine. Set at a medium slow delay time, the freeze section was gated and modulated by a cycling function from the Frap Tools Falistri. The End Of Cycle trigger turned the Freeze on and off, while a clock divided (/2) version of that trigger gated the function itself, which scanned the buffer for some granular-like sounds. The clock-divided trigger also gated an offset signal that switched the output to an octave up while the buffer was scanning. This part of the patch was tricky. I tried several different methods before I made a realization about the nature of the gate I was using to trigger freeze and scan the buffer. Because it was the End of Cycle output and the function had not yet started, it was already high, and on the first count in the clock divider. Once I started the cycle, the cycling function and resulting trigger, a simple /2 output of Divide & Conquer worked perfectly to keep the freeze function, scanning, and offset to the octave up in sync. The result is almost Data Bender-like in the best of ways.
In order to fill in some space between the sparse piano notes being played, I sent both the piano and NLMM to the Rossum Electro-Music Panharmonium, which went through the Venus Instruments Veno-Echo at about a 50/50 mix. I set unsync’d, medium-long delay times on each channel, and allowed it to bring some motion to Panharmonium before going to the output mixer.
Everything went through the always lovely Walrus Audio Slöer for some thickly modulated reverb.
I set out today to experiment with exactly two things: a dynamic trigger patch technique suggested by none other than DivKid, and a new stereo wavefolder that I haven’t used nearly enough. It started off as a simple patch, that turned into a beast.
Dynamic triggers are interesting. Normally a trigger’s amplitude doesn’t matter. Most triggers simply cue other modules to do whatever it is they do. But some drum modules, filters, and LPGs thrive when fed with dynamic triggers because it allows individual hits to be different volumes, which brings an interesting dimension to LPG pings. There’s variety; a variance that adds character and drama.
The patch itself isn’t that difficult. The key is to both attenuate and offset noise, and use that in a VCA CV input. In a thread about Dynamic Triggers on Modwiggler, DivKid writes,
It’s also good to remember (for all of us, I know I need a reminder sometimes) that CV utilities are our friends. Offset and attenuation would get you a long way. So rather than fully random. Take a CV utility and use an offset of say 3V (roughly) and then mix in the noise but attenuated and you’ll have a series of values that are hovering and dancing around the offset. Musically and sort of “humanised” around that offset.
Although it sounded easy enough, I asked, on his Discord server, to elaborate, and he confirmed that the patch is as easy as I imagined it would be:
Trigger > VCA input
Offset/attenuated noise > VCA CV input
If you have a VCA with both level bias/offset and CV attenuators (like the Intellijel Amps, Quad VCA, or many others), simply patch the trigger to the input, set the offset to taste (3V, for example), and set the CV attenuator to taste. If you set it at around 1V, you’ll have triggers between 2-4V. The more attenuated the noise, the closer the triggers will be to the offset level. However you do it, it’s a dynamic treat.
I did this patch times four, using four copies of a Frap Tools Sapel trigger, each patched to the CuteLab Missed Opportunities for probability processing before going to the Intellijel Amps in order to be dynamically controlled by the offset and attenuated noise. Amps made this patch much easier because it has CV inputs that normalize, which means I only needed to use a single patch cable to feed all four channels doing trigger processing.1
These now dynamic triggers pinged four Rabid Elephant Natural Gates, which does register dynamic triggers, where I used four Frap Tools Falistri generators as oscillators before being mixed and sent to the Venus Instruments Veno-Echo.2 There are a lot of patch cables, with plenty of mults and Stackcables throughout. Triggers were flying everywhere in the patch. From Sapel to Missed Opportunities, Amps to Stochastic Function Generator, and Ornament & Crime’s legendary Quantermain quad quantizer algorithm. And that’s just to create notes. Other triggers went to the Nonlinearcircuits Divide & Conquer and Stochaos (to trigger its rather excellent stepped CV outputs), Veno-Echo, and Calsynth Changes, which modulated a lackluster kick and the very very cool Optotronics Stereo Lockhart Wavefolder.
The wavefolder was surely the high point in this patch for me. I really only understand how half of it works, but it’s ultra-fun. It adds harmonics in really interesting ways, fed by sharp envelopes to each side from a Calsynth Changes, triggered by a Calsynth Twiigs quad Bernoulli gate based on the Mutable Instruments Branches. This creates some exceptionally cool stereo movement that I’ll have to explore more of.
I also used the Industrial Music Electronics Malgorithm Mk2 for part, which was cool, but was overshadowed by the wavefolder once it was added.
I actually used all eight VCAs in my Amps chain to dynamically control four triggers and four snappy, stochastic envelopes from the Addac506 Stochastic Function Generator which were patched to the Natural Gates’ Control CV inputs. ↩︎
I meant to mix these down in a slightly stereo orientation, but I simply forgot to turn the pan knobs. 😕 ↩︎
Today I decided to go back to a technique I’ve rarely used, and on a much grander scale. I don’t use noise very often, and when I do it tends to be for the obvious use cases. Hit hats, wind and ocean sounds, sprays, etc. I seldomly use it for modulation, and only once have I used noise of any flavor to amplitude modulate an oscillators wave. Today I would do it again, times eight.
I conceived of using noise to modulate all eight harmonics of the Verbos Harmonic Oscillator this morning as my wife was talking to me. I even popped up a bit at the idea, and she took notice.
Wife: “What?”
Me: “Nothing. Just had a thought occur to me. Not even sure if it’s worth a shit.”
I spent the better part of the morning and early afternoon thinking about how I wanted to do this patch. I knew that just noise into each harmonic’s VCA wasn’t it. Then it occurred to me: Chaos! As soon as this though hit my brain I knew what to do, and immediately went to the synth to start patching.
I ran blue noise from Sapel to input 1 of the Intellijel Amps. Amps is a special sort of VCA. Everything cascades. All inputs cascade, as do CV inputs, and there are mixing outputs as well. It’s incredibly flexible. I have four of them chained together to be an eight channel “super VCA/submixer” and it’s been a great choice. Since each input cascades, I only needed one noise input to run this entire section of the patch. Every other channel received that same blue noise input as well. Into each channel’s CV input I patched one of the eight outputs from Nonlinearcircuits The Hypster to chaotically modulate the noise levels of all eight channels independently. Once that was patched, I ran each Amps output to its own Harmonic Oscillator VCA input at random. The only part of this patch that was planned were the first and fifth harmonics, which received their noise modulation from the U and -U outputs on The Hypster as they’re the outputs with the highest amplitude. Each harmonic was slowly brought in by slowly adjusting each CV attenuator individually at random until they were all playing. The nature of chaos means that cycles, even if semi-regular at times, don’t repeat exactly the same, and the harmonics never played the same twice, which kept movement interesting. There were often pauses or redirections in motion for each harmonic. Wonderful.
The mixed HO output was patched to the Multi-Delay Processor. I’ve been taken in by the earthy sound of the Harmonic Oscillator. Each harmonic sine wave has a little hair on it once you give them a little push. The drive in the MultixDelay Processor, both on the input and on each tap output, accentuates that hair in all the right ways. This Verbos ecosystem is warm and inviting, but it can also roar. Taps four and eight were patched to the Verbos Scan & Pan, hard panned left and right, and the output of the MDP, which only had the dry signal, was patched to be in the middle of the mix. This mix created a strong signal with some subtle stereo movement which ended up being fantastic. This stereo signal was then patched to the stereo matrix mixer to be spread around to different effects.
The Rossum Panharmonium fed the Holocene Electronics Non-Linear Memory Machine, which was set with a fairly slow delay and full clockwise smearing, which really smoothed out the Panharmonium’s output for an accompanying drone that floats along beside the ever moving Harmonic Oscillator. This output then fed the Dradd(s), which did its thing in Grain Mode (although I think I forgot to turn on the modulation to both P1 and P2 on both Dradds 😬 – I’m also not convinced it isn’t lost in the mix).
I’m very pleased with how this patch turned out and was a great success at using this technique which I’ll be sure to use more often.
I was always sure that a Verbos system could do ambient, but it’s not what I read in their brand identity. Mark Verbos, the owner of Verbos, has noted several times in interviews that his main inspiration in both making music and instruments is his love for techno. The sounds his instruments make are raw, and there doesn’t seem a clear path to ambient paradise when I look at Verbos module faceplates. But in an interview I recently watched, Verbos mentioned that one of the first questions he was asked when the Harmonic Oscillator was whether it can do ambient drones, something he hadn’t considered at all when he was designing it. Nearly a decade later we know Verbos systems can used to perform ambient music, but it wasn’t until today, after a couple of days using sequencers and rhythms, that I finally decided to see what I could do.
The patch began with the Polyphonic Envelope, each of the four outputs to a different harmonic of the Harmonic Oscillator, with the All output patched to the fundamental. In a new technique for me, I decided to use blue noise from Sapel as an amplitude modulator for the fifth harmonic, which ended up being fantastic. I followed that up with very short, randomly generated pings to the eighth harmonic. As a means to more beef, I also frequency modulated the HO with its own second harmonic. The Mixed output of the HO was sent first through Amp & Tone for a bit of conditioning and resonance before going to the Multi-Delay Processor. The MDP was set to output the dry signal and some volume level delay taps, while I patched four separate individual delay tap outputs to the Scan & Pan for stereo-ification.
After some fuddling around with the Polyphonic Envelope, I finally got to a nice flow of envelopes, each triggered once the decay stage of the previous envelope begins in a beautiful cascade that cycles over and over. After a bit of figuring out some movement for the patch, I decided it was ready to record. Only this time, I decided on using some final reverb, my every trusty Walrus Audio Slöer, instead of relying solely on the reverb from the MDP. This was a great choice.
Having recorded the patch and still wanting more, I decided to process the Verbos voice through the Panharmonium (crossfaded saw waves) > the Bizarre Jezabel Pkhia, as well as the Dradd(s) to add some movement and edge, and recorded it again, so today we get another bonus patch.
I’m quite happy with how this patch turned out. This is definitely a route I’ll be exploring more in depth this year.
Today’s patch was a further exploration and curating of yesterday’s Verbos patch, with help from a couple of West Coast-y friends, Frap Tools Sapel, Brenso, and Falistri. Brenso played a pivotal support role in adding texture by supplying amplitude modulation via a triangle wave to Harmonic Oscillator’s Fundamental and the Final output to the Fifth Harmonic. Brenso’s wavefolder and wave shaper were triggered and modulated by Sapel. Harmonic Oscillator was the only sound source, being modulated by Voltage Multistage and Polyphonic Envelope. The mixed output went to Multi-Delay Processor. The saw wave was patched to Amp & Tone. It started out being pinged in LPG mode, before plugging in frequency modulation of the cutoff from Sequence Selector. Two of the MDP individual tap outputs (four and eight) are patched to Scan & Pan and hard panned left and right for some ping-pong action.
I don’t really hate dancers, even if this patch might make you think I do.
I don’t trend towards rhythm driven music set to a time grid very often. And even when I do aim to have a rhythmic patch, it’s almost always doing something to mess with time. Jamuary 2501 is no exception.
The first patch of this wonderful Jamuary 2025 started as a desire to use an old and new piece of gear. I bought the Bizarre Jezabel Quarté a couple of years ago when I ran into several Bizarre Jezabel modules for sale at a retail shop in Germany. Until then, the only way to purchase one was to go through a labyrinthine process (for an American) of ordering directly.1 But when I first bought Quarté I didn’t get along with it well at all. I couldn’t figure out how to control the LPG, and what I got was a mess. The controls were crammed, and I sold it forthright. But a few months back I got another hankering to try the Quarté. The PT2399 delay chips are legendary for their lo-fi character, and the quad nature of it as a LPG and delay is right up my current alley of interest. I went on Reverb and grabbed the first one at a decent price, only this one was the updated Quarté Mk2, with a new wet/mixed switch, and some very clever normalizing across channels. The Mk2 can be used in several output configurations, including stereo or quad mono. But the crunch of the delay is what this module is all about.
Quarté Mk2 is not hard to use, but it is difficult to maneuver. Small, unmarked trim pots in very bad places make wiggling a chore when cables are patched in, particular the “t” and “lpgi” trim knobs. The introduction of a wet/mixed switch (which is a 50/50 mix) is very nice. The vactrol-based LPGs sound good, but are quite aggressive, and with a fairly short tail. It’s not always the right sort of strike, which is why I opted to use a Natural gate to articulate notes in this patch, with the Quarté as a delay only.
Most of this patch is pretty simple. Two outputs from the Joranalogue Generate 3 were mixed together and sent to a Natural Gate. The sequence is derived from the Joranalogue Step 8. Both the Natural Gate and Step 8 are clocked by Pam’s Pro Workout, from separate outputs clocked at different rates. The kick was made by Ringing CUNSA, and the hats were blue noise from Sapel sent through a HPF (also CUNSA). Both were triggered by a x8 click output, via the CuteLab Missed Opportunities at increasing levels of probability.
But why is this music for people who hate dancers? It’s pretty groovy. It’s a good tempo for the nightclub. But there is a wrench. At some points, there was an envelope that ripped through the sequence, disrupting the timing and jolting the groove. It’s sudden and unapologetic. The sequence always got back on the grid quickly, but not always in the same spot it was before things were rudely interrupted. It’s jolting and not conducive at all for dancing. I’m sure I’d get thrown out of the club were I to play something like this.
As a result of acquiring both the Synthesis Technology E370 and the Flame Instruments 4VOX, after also getting the Humble Audio Quad Operator and RYK Modular Algo earlier in the year, I’ve been stringing together a series of chord-based polyphonic patches using various forms of slow modulation to control the volume of each chord tone. From standard LFOs to chaos, and stochastic functions to ocean wave simulations, I’ve tried at least a dozen of this style of patching over the last several months. Some of these have used static chords that don’t really move anywhere. Different notes of a chord come in and out chaotically (in most cases), but the chord itself doesn’t change. Others are based on the harmonic series, where only one pitch change of the master oscillator affects all of the individual harmonics resulting in chord changes. All of those were composed using chaos or random as a pitch source. But, with one exception, it wasn’t until this patch that I used the NOH-Modular Pianist with real intent and composed a chord progression to move the piece along. To set a mood and provide some tension and relief with harmonic motion in addition to volume and timbre changes. And this time I went big with using all eight CV outputs, rather than just four.
The NOH-Modular Pianist is an interesting module. It promises a world of harmonic movement in an environment where using chords isn’t a simple proposition. Polyphony in Eurorack is equipment and labor intensive. Each separate note of a chord requires its own separate oscillator, function generator, and VCA, at minimum. and requires its own discrete signal path. That’s a lot of patching for what is an easy task in a DAW or by using keyboard-based synths. It’s a lot of tuning (and re-tuning); lots of signals to tweak, and lots of modulation to account for. Before the Pianist, ways to get this sort of advanced polyphony was hard to come by. You could use a MIDI > CV converter, which has its own challenges, or else by painstakingly programming a pitch sequencer note by note, which requires a level of music theory knowledge that most don’t possess.1 MIDI > CV converters require careful calibration, and there are few sequencers with more than just four channels. But the Pianist is different.
Rather than programming chords note by note, Pianist uses standard western music shorthand for identifying chords, and the module does the rest. When you program it to play a CM7 chord, for instance, it knows to send out pitch data for C E G and Bb. It’ll even repeat chord notes in a different octave if no color tones are used. You can add two chord extensions beyond the 7th, called Colours in the Pianist, or use chord inversions to designate the third or fifth as the bass note in the chord. If a up to six note chord can be played on a piano, it can be played by the Pianist.
Users can freely enter chords from scratch in Free mode, or, to make the job even easier, set it to Scale mode and choose only from chords within your chosen key. The scale can be set to Major, Minor, or any of the modes2 and Pianist does the rest. So, for example, if a user in Scale mode were choose A Major as the scale, Pianist would present you with only AMaj, Bmin, C#min, DMaj, EMaj, F#min, G#dim, the diatonic chords in A Major, in order to facilitate easier chord progressions for theory novices. As long as your oscillators are tuned, your chords will be in key. Nifty. For those who want to use chords outside of a key, or if your composition isn’t really in a specific key, Free mode allows for creating chords from scratch. Virtually any chord is possible (up to six notes). In both modes, harmonic complexity is simple, with up to two color tones available, and made even simpler in Random Gate mode where each gate received will add random colors automatically, and choose colors that make harmonic sense within that chord. The workflow in creating chord progressions is intuitive. I was quickly making fairly complex progressions with repeats and skipped chords with ease.
Though Pianist is a boon to those of us seeking access to polyphonic 12TET harmonic movement in our Eurorack patches, it does have its weaknesses. Though you can move notes up and down in octaves to create chord depth, it’s done in a haphazard way. Rather than setting each note for the exact voicing you’re looking for, you have to rely on functions Pianist calls Shift and Spread in order to get full, rich chords that don’t clutter a particular part of the audio spectrum, but it’s not exactly clear how that affects the chord as a whole. I can hear changes, but can’t always identify them. Easy variety, however, can be achieved when the Gate mode is set to Spread. No chord will be voiced exactly the same which creates intrigue.
The calibration for the module, at least in Version 1.0, is straight funky. This patch uses eight discrete oscillators. While tuning I sent a C from Pianist to set a baseline. But in order for the oscillators to play the C being sent, they each had to be tuned to G, which I found odd. The newest firmware, 1.2, addresses tuning and scales in a way that version 1.0 does not, which is a great improvement by all accounts, even if I haven’t used it yet to note any changes. Since I’m using Pianist in Free mode in this patch, however, there wasn’t a compelling reason for me to upgrade, though I certainly will now that I’ve finished recording it, even if I have an aversion to the upgrade processes of most digital modules.
The screen has a lot of information, and not a lot of room. However, navigation is still reasonably simple and the information on the screen laid out such that it’s not hard to read. It’s easier to read and use than many far more established modules like the Disting Ex, Kermit Mk3, or uO_C, even if there isn’t a lot of screen real estate. The interface is super easy to navigate using the mini joystick/push button. Version 1.2 is reported to have an even more streamlined navigation and menu system. Though altering global settings like the Scale, Gate or Spread behavior requires some menu diving which is never fun, programming chords decidedly does not. It’s a point and click operation made easy with the joystick, all done on one level. Move the cursor to what you want to change, click, move the joystick to the desired value, and click. Done.
A major issue with version 1.0, which may have been changed, is that it always boots up with the first saved sequence. Unless you save your progression to one of the user slots, you will lose your work if the module power cycles. If you don’t have much in your progression, or it’s a super simple that’s no problem. But if it’s long or has a lot of direction you might be losing a lot. Ask me how I know. 😕
Pianist has its own clock that will change on each beat, along with a clock output to trigger envelopes or some other event as chords change. But it also has a clock input, which will move along the chord sequence with every rising edge like any standard step sequencer. Being that I rarely use a steady clock, I haven’t tried the internal clock, and have instead used clocks created by chaos or some other irregular source. This patch used a fairly complicated sub-patch in order to derive the chord changes. I didn’t want haphazard pitch changes in the midst of notes actively being played, but only when nothing was being heard. Finding an approach for this was time consuming, and although there are probably (certainly?) other methods that would work as well, I settled upon an approach using two comparators, one analog and one digital.
The four waves from Swell Physics first went to the Xaoc Devices Samara II. Samara compares all four inputs, and outputs the Maximum signal (AKA Analog OR). Being that these four waves were controlling the volume of the individual chord tones, it occurred to me that once the Maximum signal went below 0v meant that all four parent signals were below 0v, which meant no volume at all from the chord voice. This is exactly when I want to trigger the next chord in the sequence. I then sent that Maximum signal from Samara II to a digital comparator, the Joranalogue Compare 2, with its compare window set to anything below 0v. So once that Maximum signal went below 0v, it would spit out a gate that would trigger a chord change in Pianist.
The eight chord tones created by the Pianist went to eight different oscillators. The root, third, fifth, and seventh (or fifth if there is no seventh) form the base of the chord and all go to one of the four Flame Instruments 4VOX oscillators, while the color notes and two additional root notes, one that follows chord inversions and one that does not, all go to a self-frequency modulated Frap Tools CUNSA, where each filter is set to self oscillate, and pinged in a Natural Gate.
The Flame 4VOX has been around a long time. My brother, a house sound engineer, producer, and DJ who’s been into Eurorack a long time, lusted for one long before I even knew what Eurorack was. It’s a fully polyphonic, wavetable oscillator beast, split into four sections of up to four oscillators each. Each oscillator can create detuned swarms, chords, or be unison. Each oscillator can be controlled by v/oct CV or midi, and is fully polyphonic with its own output. It really was a very advanced piece of gear for its time. It still is, even if it hasn’t been updated in several years and is showing its age. There are two pots and two CV inputs per oscillator that can control several parameters including scanning the wavetable, detuning, amplification, and more. It has internal VCAs to control volume, but I did not like how they functioned at all, and opted to use external VCAs, which worked to my benefit allowing me to modulate two wavetable parameters rather than the volume and only one parameter. There are also separate FM and reset/sync inputs per oscillator, along with its individual output. Even if CV-able options seem to be limited, virtually every facet of the 4VOX can be addressed via midi, although I haven’t used it with midi at all. It’s a very powerful oscillator bank that can cover lots of ground.
Although I wouldn’t say programming the 4VOX is difficult, it’s not as easy as most more modern interfaces. The screen is bare bones with low resolution and a slim viewing radius. The encoder is a little weird. You have to push it down and turn CCW to move downward in menus, while you simply turn it CW to change parameter values inside the menu. As a unit, it’s impressive. There are lots of options, plenty of stock wavetables to choose from, and it sounds good, but it shows its age. Upgrading firmware is a laborious process with modern computers. Although you can install your own wavetables, the processes to convert them to the right format and get them loaded can be a nightmare, particularly if you’re a Mac user. All of the computer-side software is a decade or more old, and workarounds are sometimes needed. I’m not a “I need to load my own wavetables” kind of guy, and my unit came to me with the latest update, but if I were that guy or my unit hadn’t already had the latest firmware, it would not be an easy task. I’ve had similar problems with older gear before3, and they’re no fun.
The 4VOX forms the base of the chords, brought in and out by the four waves from the Addac508 Swell Physics. The sound is both powerful and delicate, with each quadrant set to four slightly detuned, unison oscillators, each one being slightly modulated by the Nonlinearcircuits Frisson. Although I was pleased with the 4VOX’s performance, the Synthesis Technology E370 is a better overall option. Although the E370 is also based on nearly decade-old technology, it’s still a better user experience. The screen is in color, fully customizable, bigger, and gives more information. The stock wavetables are a gold standard. The software UI is easier to navigate using a more standard encoder. The physical UI is also far better arranged. With the 4VOX, the screen is in the middle of the module, knob locations are not symmetrical, and are more difficult to wiggle once everything is patched up. The E370 has everything laid out very neatly. The screen is on the far left, I/O on the far right, with knobs in the middle, leaving more than enough room to wiggle. It’s really a premium user experience. The only advantages the 4VOX has are its price, size, and complete polyphonic midi capabilities. The 4VOX has always been less expensive than the E370, and that remains true on the secondary market. However, the price differential on the used market is much closer than their respective MSRPs, as the E370 can be purchased for well under 50% of the original retail cost. The price difference on my units, both purchased used within a week of one another, was $100. The size, however, cannot change, and in that regard the 4VOX has the E370 soundly beat. At 29hp the 4VOX is still large (and odd hp 😕), but it’s dwarfed by the massive 54hp E370. It’s the massive size, however, that makes the E370 such a pleasure to wiggle.
Once mixed to mono in the Atomosynth Transmon, the 4VOX chords went through the venerable Industrial Music Electronics Malgorithm MkII, a powerhouse FSU-type module with bit crushing, sample reduction, and various types of waveshaping available to have anything from subtly crunchy through completely mangled audio at the output. Using Malgorithm was an absolute treat. Most of the lo-fi effects I tend towards are of the vintage variety, tape sounds, record pops, etc, vs just slightly old sounding digital artifacting, so it was a different sort of experience. On any other day I likely would have chosen distortion in this role, but the day I started this patch I precipitously chose to go with a different kind of dirt. And it was perfect. I was still able to get some nasty distortion via the “Axis” waveshaper (whatever that does), with the bit crushing and sample reduction playing a slowly increasing role. It’s starts clean, then moves to understated digital artifacting, and finally waves of full blown destruction, ending clean once again. One aspect of Malgorithm I enjoyed was the interaction between input level and the waveshaping. It responds similarly to tube distortion circuits, where the harder you drive the input, the more distortion there will be ranging from just barely there to outright obliteration. Each of these waveshaping circuits has three different levels, red, orange, and green, and all of them have their own character. These waveshapers can even interact with each other for nuking your audio from orbit if that’s what you want. I rode faders on the very awesome Michigan Synth Works XVI to control both the input level as well as the wet/dry mix in order to provide a performative aspect to this patch. Both the bit crushing and Nyquist parameters were modulated by the Addac506 Stochastic Function Generator, with a fairly wide range of both rise and fall times between medium and long. Each of the parameters were set to moderate crunchiness with the knobs, with their modulation moving towards a full-resolution signal. This created an absolutely amazing effect from the sound of dying batteries to the fabric of the universe being unzipped and sewn back together. I would highly recommend Malgorithm to anyone, but you’d have to find one first.
Once through Malgorithm and into the stereo matrix mixer, these now buzzy chords went to the Holocene Electronics Non-Linear Memory Machine, with a very light perfect fifth shimmer in the feedback loop. I initially went with a full octave shimmer, but decided against it as it was too prominent and spiraled too far out of control too quickly. This created a very subtle sheen on the chords that isn’t noticeable much of the time, but is a nice effect nonetheless. Feedback and Spread were both modulated by attenuated versions of the Average output from Swell Physics.4
The color tones of each chord were all sent to the mighty Frap Tools CUNSA, a quad filter extraordinaire, and pinged in a pair of Rabid Elephant Natural Gates. Though I was tempted to use the simple sine waves from each LPF output, I later decided to use the HPF output as a means of each oscillator frequency modulating itself in order to add some harmonics, which worked a treat. In retrospect, I could have simplified the patch significantly had I pinged CUNSA itself instead of running the output to Natural Gate, but I chose the Natural Gate route because Natural Gate.
Using a patch technique I’ve used often, the gates that pinged the Natural Gates were created by running the four waves from Swell Physics into the Nonlinearcircuits Numberwang. But rather than simply choosing four gate outputs, I ran several Stackcables so that each strike input on the Natural Gates were each derived from three Numberwang outputs. This filled in space much better. The notes are still sparse, but they’re triggered at a much better pace using three gates each rather than just one. These notes fill out chords in interesting ways. They’re very short, but combined with delay and reverb, those colors hang around long enough to create intrigue in the overall sound without being intrusive.
These notes were sent to what is becoming one of my favorite delays, the Chase Bliss Audio Reverse Mode C, a re-imagining of one of the modes on the legendary Empress Effects Superdelay. Although it certainly does standard stereo delay stuff, it excels at being a quirky sort of delay, able to output normal delays, reverse delays, and octave up reverse delays, by themselves, or in a mix. Mixing delays creates a beautiful sound space of echoes bouncing all around the stereo field, at different speeds and octaves, which is an incredible aural treat. I haven’t yet learned to properly modulate the Reverse Mode C, but that’s a function of not having a firm grasp on midi. As I figure that out, things ought to get very interesting, with different sorts of delays fading in and out in very creative ways.
The last synthesized voice in this patch is the Good and Evil Dradds as an effects send, sending both the chords and ornamental color notes for some granular action. The Dradd(s) outputs went to separate EF-X2 tape echoes with different settings. Ever since getting a second Dradd, I’ve been infatuated by what I can do with them, and this patch may be the best result yet. Both were set to Tape mode with similar P2, but different P1 knob positions, with the P1 parameter on both being modulated by an attenuated version of the Average output on Swell Physics. The Dradds, in some ways, steal the show. They create all sorts of movement in the stereo field and fill the space between chords and color notes in ways that keep the piece from becoming still. They’re the wake left after a large swell passes by. The bio-luminescence after a crashing wave.
The spoken voice is a set of three samples that were triggered in Koala on the iPad. Triggers emanated from the gate outputs on Swell Physics combined in the new Nonlinearcircuits Gator, sent to the Joranalogue Step 8 and then the Befaco CV Thing and converted to midi notes that were sent to trigger Koala samples on the iPad. It took me a while to figure this one out, though it worked exactly how I envisioned. Gates from Swell Physics were combined in Gator, which triggered Step 8. Each of the first three steps sent its individual gate output to a different CV Thing input. This ensured that the three samples were always triggered in the correct order. The samples themselves were then sent to a new collaborative delay plugin, Moon Echo, by AudioThing and Hainbach.. Moon Echo is a modeled simulation of bouncing sound off the moon, and has a very distinct character. The delay was set to fully wet, and has a delay of about 2.5sec, though that changes depending on the day. The moon is not at a fixed distance from the earth, and the plugin reflects that. By “pinging” the moon upon startup, you will get the current distance to the moon, and a new delay time down to five decimal points (1/100,000 of a second). Fucking cool.
One thing I did differently with this patch paid off high dividends, and will absolutely become a staple in my recordings. I’ve been patching for a few years, but am still an absolute novice at standard studio stuff. Mixing, EQ, compression, and everything else in that sphere evades me. I’ve used some very basic EQ in the past, but really only on the final output, which, as I’ve discovered has several drawbacks. This patch was the first I’ve ever recorded using EQ, the highly regarded Toneboosters TB Equalizer 4, on individual channels as they were being recorded. The chords, ornamentals, and reverb send received EQ that greatly improved the sound quality, even if it could still be better. I did, however, neglect to put EQ on the Dradds, which proved to be a mistake, as there is a very occasional pitch that pierces through in what can’t be far from dog whistle frequencies. It’s not eardrum busting, but I can hear it, and it annoys me. I didn’t catch that behavior when recording, and never EQ’d it out. That said, it was also the first time I’ve recorded a modular patch in separate multi-tracks, including the chords, ornamentals, Dradds, spoken voice, reverb return, and the mixed stereo signal (presented here). I can go back and make changes or additions should that be something I want to do, or send the parts to someone else for mixing and mastering should I ever choose to release it.
Overall I’m very pleased with this patch. It was originally composed in a different key and completely different chord progression, and for a special group of online friends. The chord progression I used in this recording wasn’t composed, as such. At least not by me. I asked ChatGPT for a “sad progression, yet with a sense of hope.”5 I asked for it to be more sad, and it changed key from Amin to Dmin, and ended in a non-diatonic chord (DMaj), which I found a wonderful “choice.” Then, as a means to test the Pianist, I asked for several chord extensions and inversions, and ChatGPT complied, giving us what we have in the recording.
Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.
I studied music performance in college, and have a decent grasp on music theory. The last 30 years, however, have pared that knowledge down to basics. I’m certainly no expert, but I can read chord charts and identify chord notes, even if I have to think for a second. ↩︎
The Humble Audio Quad Operator I purchased did not have the latest firmware update, and the internal VCAs all bled badly. I was unable to install the latest firmware with a modern Mac. I was fortunate to have an older one available to me that I was able to use. ↩︎
There are no fewer than seven modulation points in the patch that are all modulated by an attenuated version of the Average output from Swell Physics. ↩︎
This was literally the first time I’ve ever considered purposefully using AI for anything. ↩︎