Made Noise – Sketch 3

I always seem to find myself both perplexed and captivated by my Make Noise case. Because it’s a relatively small system that’s also a walled garden, modules are limited. I’ve always scoffed a bit at the idea that a small case can spurn on creativity in a way a big case can’t. That it forces you to make deliberate choices and patch in new ways to get the most of what you do have. But with my Make Noise case that’s at least partially true. I’m not sure whether it’s the Make Noise ethos or the small case, but I find myself having to really think through patches. Even normally basic tasks, like mixing, can be a logistics challenge while patching. There are a finite number of jacks to plug, and a static few modules to work with.

After a short hiatus, the Make Noise case is back in order and with a couple of new additions. I needed the case for a travel synth, and I’ve been crazy busy since my return. I made a trip to Asheville and had a really great day at the QMMG in-store event, and I recorded a couple of tracks on the main synth and another on my new Make Noise 0-Series setup since, but I’ve straight procrastinated wrestling with the shitty M2.5 screws and sliding nuts Make Noise uses with their cases.1 Post-trip I also decided, after seeing rack rash on a couple of the travel synth modules from being screwed in without washers exactly once, that I was going to wait until I received longer screws and nylon washers to mitigate any further scratching issues. Rack rash isn’t the end of the world, but being that I move modules in and out quickly, I like for them to retain resale value, especially when it comes to factors I can control.

Once I got the case assembled I went to work. Not on creating a beautiful patch to share with the world (even if I do think the results are beautiful), but on seeing just exactly why QMMG generates the hype it does. How does it ring? Beautifully. How does it squelch? Loudly. How does it sweep? Lovely. How does it bleed? Perfectly.

I set out to re-create one of my favorite patches that encourages vactrol bleed, allowing subsequent pitches of a sequence to be heard after a step has been passed, and before the vactrol has had the time to close the gate of the LPG. These notes aren’t being gated, but sneak through at an audible level anyways as a byproduct of the slow vactrol response. Walker describes these bled notes as “[N]ot ghosts, exactly, because they have yet to exist. They’re more like premonitions or ideas; bulbs casting light on possible futures inscribed in the sequence.” Although I’ve written about this technique before, and use it often, I couldn’t resist using it with the new QMMG. I wanted to hear the vactrols for everything they are, not try and cover them up or hide their true nature. After all, Tony Rolando allegedly has said that the vactrols are the heart of QMMG, and it bleeds. It’s the module’s logo. Vactrol bleed is at the center of QMMG’s identity, and I wanted to hear it.

From Make Noise’s QMMG In-Store event flier.

There are also 3 other voices in the patch. The first is a moderately modulated QPAS, pinging quietly in the background, sounding beautiful as ever. The second is the sine wave of the first DPO oscillator ring modulating the second sine oscillator of DPO in the modDemix. It only hits very infrequently, and is NOT passed through a LPG, but a VCA so that it does not ring past the current step. The third is a ripping bass part that absolutely does not fit with the rest of the patch in any way. What I was attempting did not work. Instead, I got a killer bass sequence that is contemporaneously always staying the same, yet always changing at the same time. This bass line is created with the STO’s Variable Shape output into QPAS in LP mode, with a completely ungated sequence on the X channel, which is clocked by alternating outputs on Tempi. Both of the clocks used were run at different rates, as well as having stops in Rene at different rates.

This patch is not perfect. It’s not even very good. But it’s a peek into the process understanding of how QMMG works, while trying to have a little fun at the same time. I also inadvertently learned a new bass technique for my patching library. If I were to expand on this patch, I’d certainly unmarry the bass part from the rest for its own track, but other problems exist too.

The delay is too forward in the mix. With the initial sequence and its premonitions, QPAS’ pinging, and ring modulated sine waves all going through the delay, it got very busy in the mix, sometimes obscuring the bleeding vactrols of QMMG, which was the entire point of the patch in the first place. I also ran into an inherent problem with using DXG, even as just a mixer. I’ve had my fair share of complaints about the DXG’s inability to not mix. I feel like it’s an extremely important piece of gear in the history of modern Eurorack, but with some serious flaws. It’s the first stereo LPG in existence (as far as I can tell), and made by the LPG legends at Make Noise who made Optomix (two versions), QMMG (two versions), LxD, MMG, RxMx, Dynamix, and the brilliant transistor-based LPG in the Strega, yet despite its importance and lineage DXG is a tragically imperfect piece of kit. As a LPG mixer, it raises and lowers both the volume and the harmonic content of the input simultaneously, more closely mimicking how sounds work in nature. As a sound gets louder, there is more higher harmonic content. As that sound gets softer, it loses harmonic content. And that’s great when you want to create sounds, but when you mix already created sounds together you generally want to control the volume, while leaving the harmonic content intact at every level. The DXG doesn’t allow you to do that. I noticed this phenomena most directly when trying to mix a full wet Mimeophon return signal on Ch 1 from with the dry signal on Ch 2 using its send outputs. Because I didn’t want what amounts to a 50/50 dry/wet mix, I wanted my repeats much softer than the dry signal, the repeats from Mimeophon were not only quieter (good) when patched through the DXG, but also near bereft of its upper harmonic content (very bad). All that pretty Color and Halo being added in Mimeophon, shat upon by the DXG. Although I was able to mitigate this problem by patching the output of the full mixer, rather than only the Ch 2 send output, to Mimeophon, and patching it as an insert using Mimeophon’s mix control rather than as an AUX send with a full wet return as originally intended, this necessary workaround seems to greatly minimize the utility of the Ch 2 send outputs. Traditionally, one would patch the dry signal to Ch 2, the Ch 2 send outputs to Mimeophon with its outputs patched back to Ch 1, and mixed with the original dry signal at the mixer’s sum output. However, losing valuable harmonic content from Mimeophon’s output when I only want to lose volume makes that a far less than ideal use case scenario for me. They work great as mixers, but only if you want to mix inputs at relatively even, loud levels.

Overall I’m pleased with the patch. Not the outcome, per se, but that the process of patching taught a couple of valuable lessons about the gear I’m using so that I might better use it in the future. The QMMG sounds fantastic, both as a LPG and a filter, and I’m slowly learning how to control the Final output of the DPO. Not every patch will turn out well, and that’s okay.

Modules Used:
Tempi
Rene’ V2
DPO
QPAS
STO
Maths
QMMG
Function
Wogglebug
modDemix
Mimeophon
DXG
X-Pan

Performed and recorded in 1 take in AUM on iPad via the Arturia AudioFuse.

  1. I’m clearly a Make Noise enthusiast, but that by no means makes their products perfect. There is no good excuse for sliding nuts and un-washered M2.5 screws in an otherwise premium case. ↩︎

Drifting Numbers

Most of the time in modular synthesis drift is bad. Musicians all over will do whatever is necessary to mitigate drifting clocks or rhythms. Module makers of all sorts include resets specifically for the purpose of realigning the outputs to an incoming clock with the explicit goal of avoiding drift. Maintaining time is crucial in any beat driven track. Except when it’s not. And it’s this rhythmic drift that I wanted to explore in this otherwise beat driven patch.

It’s no secret that I like chaos. I use it for modulation or as a clock in most patches. I generally don’t expect or even desire steady clocks when I use chaos, but I also don’t generally produce beat driven compositions, and when I have I’ve tended towards uniform clocks and on-beat rhythms like most people. But today I wanted to explore a beat driven patch that uses chaos as its driving force. Rather than fear the drift, I endeavored to lean into the inherent wandering of chaotic signals while using them as lead in creating the rhythms. What I got is a wonderful dance of rhythms that want to be in line, but just can’t quite maintain their focus to make it last the whole way through. A set of rhythms that are mostly on the grid, but that occasionally drift before finally meandering their way back to the beat, like an ADHD dad in a grocery store. What we hear is the beauty of chaos in real time.

A few months ago I emailed Andrew at Nonlinearcircuits to ask for a module recommendation. I had lots of CV producers, but outside of sequencers, a clock divider, and EOR/EOC gates on function generators, I didn’t have many modules that can produce a plethora of gates. Although he had a couple of module recommendations, none came more highly suggested than Numberwang. “It’s like Let’s Splosh, but for gates” were his exact words, and I was sold. Whether using regularly timed signals like LFOs or cycling envelopes, or irregular signals like chaos or random, I’d have a gate creation machine that would be directly related to the signals feeding it.

Although I wasn’t sure how this experiment in chaos-driven rhythms would turn out, I knew I could get at least one of the waves to be in time. NLC’s The Hypster has 3 controls (frequency, gain, and damping). As explained in the Build Guide, “Damping keeps the circuits in the range of useful, somewhat regular modulation signals. As we’ll see later, more damping leads to more regular sine-like oscillations.” The guide goes on to show that although the signals are not exactly what we’d call uniform, if we use a good mixture of both both gain and damping, at least one of them will be regular(ish). Regular enough to drive a beat from. What I heard while using Natural Gate to tune the regularity of the incoming gate, saw via Numberwang’s copious blinkenlights, and with my metronome confirmed it.

With Natural Gate pinging away on my down beat, it was time to find those drifting rhythms I was after, hoping that the chaos feeding Numberwang wasn’t too far dampened and too regular. But things proverbially fell in line all too quickly. After trying several outputs on Numberwang in order to get the perfect four beat sequence, I found it. Beat one of the gate sequence is always on time, at the blazing tempo of 53bpm. This is also the beat that controls the kick and hats (using Pam’s as a 2x clock multiplier). Gates two, three, and four drift slightly. And not in that weird, timely way that slightly out of sync clocks drift and realign,1 but in a more organic way that both speeds up and slows down around that base tempo while being on grid most of the time. It’s a playful game between the clock and its trailing rhythms, not unlike three dogs drifting around its steadily paced owner on a nice walk in the afternoon.

Now that I had a good gate sequence, I needed some pitch to go with it. This patch uses four outputs from the Joranalogue Generate 3 as the main sound source. All four of the outputs (odd, even, full, and core) have very different sounds and timbres, and are up to two and a half octaves apart,2 each patched to a Natural Gate input. But even though I was only using a single pitch sequence for four separate parts, I knew I wanted that pitch to be derived from the same source as my rhythms. I wanted as much of the patch as possible to be driven by those four original chaos outputs. Using a mult, I ran the same four The Hypster outputs used to create my gate sequence in Numberwang to Let’s Splosh, and randomly chose four outputs that were then mixed in the Atomosynth Transmon before making its way to Quantermain for quantization (E Japanese), and finally to Generate 3’s v/oct input. These four Let’s Splosh outputs were modulated in this very excellent voltage controlled matrix mixer via four outputs from the Nonlinearcircuits Frisson. Using four mixed sources for pitch allows for some easy flexibility when trying to add variety. A twist of any of the knobs on the mixer will give a different result in the final pitch sequence. The pitch change was being clocked in Quantermain by one of the unused Numberwang outputs, along with all four notes in the sequence at the Natural Gates’ “Hit” inputs. Once the “Open” parameter on Natural Gate was closed to give the notes definition outside of pitch and timbre changes at about 1:30 in, those same gates also triggered four envelopes on a pair of Frap Tools Falistris to modulate the “Open” parameter and give each note just a little more punch and space.

But Let’s Splosh wasn’t finished doing its part at deriving the pitch sequence, as 10 other outputs were used to modulate various parts of the patch. From subtle changes in the hi hat’s envelope decay, to modulating the “Even”, “Odd”, and “Fundamental” CV inputs on Generate 3 that are constantly changing the timbre of each note produced, and both P1 and P2 CV inputs on both Pladask Elektrisk Dradds used in the patch, Let’s Splosh, and the four signals that feed it, are all over this patch. In total 14 of the 16 Let’s Splosh outputs were used, spreading out remnants and recombinations of those four original chaos signals throughout the entire patch. The only independent module in play that isn’t being driven by those four original chaos signals is the NLC Frisson, which plays a somewhat minor role in modulating direct descendants of those four original chaos signals in getting a pitch CV.

From here the patch is relatively simple, mostly with the sequence running through various effects. The most obvious effect is the ever-wonderful Olivia Artz Modular Time Machine. The taps on the delay combined with feedback can take a very simple four note sequence and turn it into any rhythm I can imagine, and plenty others I can’t, even if the one in this patch is rather unimaginative with all of the taps active, though at different levels. But it’s not just some ornamental delay that I was after either. It’s the Time Machine, when juxtaposed against the steady kick drum, that fully reveals the chaotically drifting rhythm. It’s the key to the entire endeavor. The sequence is only four notes long, and all four notes are quick plucks in Natural Gate. There isn’t much musical information to go on, despite the pains taken to create the patch, and it’s the Time Machine that helps bring that very simple sequence to life. With Time Machine, the slightly out of place notes in the sequence are given a chance to wander. It exposes the frolicsome ebb and flow of chaos for all to see.

Another accompanying effect used in the patch is the always beautiful Rossum Electro-Music Panharmonium. I’ve found Panharmonium to be indispensable in my patches, and have written about it before, as it allows me to fill sonic holes in a very organic way, using the main driver of the composition as its muse. Pitching the Panharmonium up or down to suit my needs, I can fill gaps in the frequency spectrum, or avoid the clashing of instruments in a particular spectrum. I also frequently use it for its excellent ability to fill space, especially in patches that are otherwise sparse, and since it follows its input directly, it’s always harmonically related. In this patch I pitched Panharmonium down an octave using cross faded sines, and ran it through the Bizarre Jezabel Mimosa as an insert, adding progressively more and more distortion as the piece progressed, with it running full wet, though not full distortion, by the end. This creates a bed of pads for these meandering rhythms to float through, while filling space in the frequency spectrum. It helps create texture, and gives the composition some weight.

A pair of Pladask Elektrisk Dradds also made an appearance, even if it didn’t really work out. Using the dry sequence and its many repeats from the Time Machine, my first thought was to fade the granular outputs of the Dradds in and out. Something to add some ornamentation to the patch, but without being prominent. It sounded great when I was setting it up, but is barely audible for most of the patch. Which brings me to the new SetonixSynth Shaka modular voltage controlled stereo matrix mixer.

It’s also no secret that I really like the AI Synthesis 018 Stereo Matrix Mixer. It fundamentally changed the way that I patch and how I go about composing pieces from the moment it was first installed. It opened up a lot of opportunities for how I enjoy patching in modular. I’ve used it in literally every patch since it went in the case. It prompted me to buy the also excellent Atomosynth Transmon voltage controlled matrix mixer. When SetonixSynth announced earlier this summer that they would be releasing a voltage controlled stereo matrix mixer, I knew I was going to get it. I quickly joined the pre-sale mailing list which would give a goodly discount on the first units sold. As soon as I got the email with a link a couple of months later, I went ahead and purchased a Shaka 8 and two Shaka 4 expanders for a four input, four output voltage controlled stereo matrix mixer. There’s the very real possibility that I purchased the first one sold once that link went live. As soon as I got it, it went in the case. I used it in my first patch after putting it in, though I didn’t use any voltage control, opting to see just how close it is to the AI Synthesis on an even playing field. It sounded great. Like the AI Synthesis, the Shaka system is made foremost with high quality sound in mind. But I did notice that the exponential nature of the volume control was unlike anything I’d used before. There’s no sound output until you get to about noon on the dial, and it moves up rather quickly from there. According to the developer, at full attenuation, the output is at -100dB, while it’s still a remarkable -50dB with the dial at noon, maxing out at unity gain (8v) at full clockwise. Adding CV up to 10v can output your signal at +20dB. But that leaves just half a knob twist to dial in the level of each node, making fiddling with knobs a must, and the need for precision is paramount, especially if you’re to perform with it. I won’t say I had trouble dialing in good levels with the knobs. It was easy enough, even if that meant paying much closer attention to a simple process than I normally might.

But once I decided to try and use CV control with this patch, I was stymied by the exponential nature of the level control. I’ve never used an exponential VCA before. All of mine are either linear, or somehow switchable between linear and logarithmic. I was trying to do relatively simple things that I’ve done since my very first patch, like using a cycling envelope to open and close a VCA, and I simply couldn’t figure it out. My first thought was that since the VCA is fully open at 8v, I’d send an 8v envelope in the CV input for a channel and everything would be right with the world. Only it wasn’t. With an 8v envelope from Zadar and the knob at full CCW, I got virtually nothing from the output. I would hear the two Dradds granular-ing away for perhaps two seconds of a 20 second envelope. I couldn’t get any sound at all until the envelope was higher than 6v. I was stumped, with no idea what the problem was, much less a solution. I tried adding some offset with the knob, but that only led to blowing the signal out quickly. I never did find a good solution, hence the sparse appearance of the Dradds.

But hope isn’t lost. In the Shaka thread at Modwiggler, I noted my frustration and was given a couple of tips by the developer. He admits that using CV will take some adjustments to how one might normally patch a VCA. In his last response to me he noted, “With such a slow moving LFO, your best bet is probably to attenuate it more into the range you want. The full attenuation of this module is -100dB, the maximum allowed by the VCA it’s using, so at 10 o’clock it attenuates by -65dB and at noon it attenuates by -50dB. Depending on the input signal that is still a lot of attenuation, so is probably where you want to start for many applications.” He further goes on to say that having silence was his goal at full attenuation, noting that it was the largest concern from testers during development. Having had mixers and other gear that bleeds audio where it doesn’t belong, whether in an output or via crosstalk between separate channels, I can’t say that I blame him. If it’s not a vactrol based device, it shouldn’t ever bleed.

That said, this needed conditioning of CV before going to a VC mixer seems to be trading one hurdle for another. A voltage controlled mixer is desired so that you don’t need separate VCAs to manage signal levels. They’re built right in. That’s a highly desirable feature, especially with stereo signals. But if I need a VCA, or an attenuator, to condition my CV for use in the mixer CV inputs, I’ve simply traded out the reason why I need a VCA pre-mixer. It’s a side step, when the point is an improvement. An external VCA is an external VCA whether it’s used for note shaping before a mixer or envelope attenuation in order to shape the note in the mixer. Add in the relative complexity of having to carefully attenuate and shape the CV alongside meticulous knob placement on the mixer itself so that the CV functions in the way you think it should, and I’m not yet convinced that this particular implementation a real step forward. I’m not yet ready to give up on the Shaka system. It’s a very powerful idea that could bring yet another boon to my patching in the same way the AI Synthesis 018 did over a year ago. But if these VCAs don’t function like virtually every other VCA I regularly use, and CV preparation is more of a chore than simply using a VCA for note shaping before the mixer, I’ll have to re-evaluate its place in my rack.

Unfortunately I was unable to get good CV control over the Dradds’ level, and it only peeks through seldomly, and for only a short time. Fortunately my inability to get good CV control over the Dradds wasn’t a crucial part of the composition, and despite its absence, the patch sounds great.

The last part of the patch couldn’t be simpler. The kick drum is a simple filter ring with the Frap Tools Cunsa. The same envelope used to hit the filter input is also used as FM to give the drum a bit more punch. The hats are just as simple, using white noise from Sapel that is patched through Cunsa using a HP output. The VCA in Cunsa is hit by an envelope with a very lightly modulated decay to introduce some difference. Something between a fully closed “tic”, and a very slightly opened “pshh.” Both envelopes are clocked originally from that same regular downbeat of the four step sequence, but it’s patched through Pamela’s Pro Workout. Both outputs are at a 2x multiplier, with the hi hat output being shifted 50% to be on the offbeat.

Overall, this was a really fun patch to make. I had an idea that I was able to bring to fruition, despite some difficulties with a new piece of gear. I’ll keep working with the Shaka system until I either conclude that it’s better than the AI Synthesis 018, or I’ll sell it and wait for the next alternative.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Numberwang
Nonlinearcircuits Let’s Splosh
Nonlinearcircuits Frisson
Nonlinearcircuits De-Escalate
Atomosynth Transmon
Joranalogue Audio Generate 3
Rabid Elephant Natural Gate
SetonixSynth Shaka 8 + 2x Shaka 4
Rossum Electro-Music Panharmonium
Olivia Artz Modular Time Machine
Bizarre Jezabel Mimosa
4ms Shaped Dual EnvVCA
Xaoc Devices Zadar
Schlappi Engineering Boundary
Frap Tools Falistri
Frap Tools Cunsa
Frap Tools Sapel
Intellijel Amps
Pladask Elektrisk Dradd
Knob Farm Ferry
Pamela’s Pro Workout

Pedals Used:
Vongon Ultrasheer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Or how how the turn signal in your car will drift in and out of time with music or another car’s turn signal. ↩︎
  2. As explained in the Generate 3 manual, “[The Core output] is the 10 Vpp triangle wave output straight from Generate 3’s VCO core. Also note that it is at half the frequency of, so one octave below, the fundamental output, and thus can be used as a sub-octave signal” The manual continues on to note that the “Even” output is a saw wave at twice the frequency of the fundamental, the odd is an octave and a half higher (beginning on the 3rd harmonic), and the “Full” wave being all harmonics, including the fundamental. ↩︎

Piano Mist

There’s a patch that caught my ear in the days after a recent shoulder surgery while I was stuck in the recliner hopped up on pain killers, and looking for every distraction I could find in the synth-based slice of the internet to keep my time occupied. Unfortunately for my wallet during this time, I happed upon Tom Churchill’s excellent tutorial demos on the Xaoc Devices Odessa and Sofia (which led to an entire new Xaotic Dreams Subsystem). Stazma’s (AKA The Junglechrist) demo of the Verbos Harmonic Oscillator (particularly how it pairs so beautifully with the Multi-Delay Processor) led me on similar path with Verbos.

But it was one patch in particular that I kept coming back to which had me captivated. Over and over I’d listen to it, allowing its peace to wash over my ailing mind and soothe my temporarily excruciating existence. As I watched I would try to make out through an oxycodone fog what was happening, hoping that as soon as I was able I could create something like it. I took notes as best I could, and I traded my BitBox Micro so that I could acquire a Disting Ex. Although BitBox Micro is capable of playing polyphonic multisamples, and is a fantastic module in its own right, it can only do so with MIDI, and I needed to use CV and gates.

My first foray with this patch was a mess. The basic framework was more or less built out, but lots of things were off. My first problem was a horribly calibrated Disting Ex. Its pitch was wildly off, and nothing was in tune despite receiving carefully calibrated pitch CV. Once that was fixed things were much better, but I still had far too many dissonances that weren’t at all what I was looking for, and I wasn’t sure how to fix it. I couldn’t get the speed to something I felt was just right. I couldn’t get a satisfying note distribution. I wasn’t at all satisfied with it. I recorded it, but every time I’d listen back, I’d hear mere flashes of my goal disappear into a dark cloud of dissonance. Each listen prompted me to revisit the idea.

I’ve made over a dozen other modular recordings since that first try. Jamuary was productive. Not a single one of them attempts to use polyphonic multisampling. Not a single one of them uses Marbles or Disting Ex (in any capacity). I’d stepped away from it. During that time, when I would take a few moments to think about the patch, I gained some perspective, as well as some newfound patching knowledge and experience with the various patches I was making at the time. I was now better prepared to revisit this piano patch with a fresh take.

I knew that one of my initial problems to solve was that the original patch had too many notes available for CV to address. My first attempt at this patch was in C Major, and I left all 7 notes of the scale available between C1 and C5 to all 3 CV inputs. Marbles spits out randomly generated pitch CV and gates from its X and T outputs, which goes to the 3 CV and gate inputs on the Disting Ex, via Quantermain in the Micro Ornament and Crime. Despite having quantized pitch CV, using the maximum number of notes meant that any number of dissonances can happen at any point. Nobody wants to hear E juxtaposed with F, or any other dissonant intervals, with any regularity. Particularly not when there can be several dissonances occurring simultaneously. It’s harsh, when I’m looking for smooth.

Along with a key change (C Major to C Minor) I also made adjustments such that each pitch CV input would only generate particular notes of the scale, and not all of them. This change made dissonances few and far between, which meant those dissonances were now artistic tension that would quickly resolve to something more pleasing, and not a stream of clashing notes that barrel into one another, overtaking the piece. I made some minor adjustments to the Rate and Jitter controls on the Mutable Instruments Marbles to get a more satisfying pace and amount of sloppiness in note instantiation. I also tweaked the note distribution to get something resembling a bell curve in pitch generation. More notes in the middle of the range than at either extreme. Super low and piercingly high notes are good for effect, but not as a matter of regular course throughout a piece. These notes are generated randomly, but the process still needs well set boundaries in order to remain interesting. Unfettered random is every bit as boring as a fully repetitive pattern.

Now that I had a stream of piano notes I was content with, it was time to address the FX, which is what would make this piece interesting. The piano sets the path. The FX create the atmosphere around that path. During my first attempt at this patch, I tried to keep FX to a minimum. Some reverb courtesy of the Mutable Instruments Beads, followed later by its granular synthesis engine. The FX were sparse, but not really in a good way. The piece was empty and cluttered at the same time. Octave repeats spiraling off almost uncontrollably, awkwardly filling in empty space and becoming unruly when note generation temporarily sped up. It was a mess. A mess so bad, in fact, that I simply stopped recording out of frustration, and pulled the patch apart.

This time I started with the reverb. Although the FX is what would be most interesting about this piece, I knew I wanted to have the reverb set based on how it sounded with just the piano notes. I wanted a massive open space. Something between a huge cathedral and space. There needed to be bounds, but they needed to be pretty far out there. I had initially chosen to use the Vongon Ultrasheer for the reverb, but in a last minute decision decided to use the Oto Bam with its Ambient algorithm. Some adjustments to the size and decay, along with a bit of modulated chorus adjusted in the Bam, and we were set. In retrospect, I wish I had added even more chorus to lofi it up, or that I had used the Ultrasheer with some randomly modulated vibrato, but I’m still quite pleased with the result.

But what next? I had bad memories of out of control granular repeats, so decided to forego using it in favor of delay. I knew I wanted some reverse delay (because if it doesn’t have reverse delay is it even ambient?), but all reverse delay all the time quickly became taxing, its zips easily taking over the soundscape. So I decided to work on panning technique which would gradually move the source piano sounds between 2 different delays using 2 different sorts of repeats. The technique isn’t hard, even when adapting it to a full stereo signal. You can find the patch diagram here. These 2 delays are mixed, creating seamless transitions between 1 delay and the other. Very cool. I got movement and gradually changing variation. As one delay fades out, the other begins to fade in. Pretty much exactly what I wanted.

But even with gradually shifting between 2 wholly separate delays, the reverse delay was still a bit over-prominent, which meant that I needed a method to turn the reverse function on and off. Chaos to the rescue. After some tweaking to various facets of my clock, the delays were sorted. But there was still something missing.

I’ve had Panharmonium for a long time. It was one of my first large Eurorack purchases, and I definitely didn’t have the modular chops to use it effectively. In fact, I’d had a very hard time getting anything nice sounding from it. I could never seem to find the right analysis interval, and a couple of other settings really mystified me, resulting in what I can only describe as sonic sludge. A glob of abruptly shifting dissonances that sounded terrible. It was nothing like what the many YouTube demos promised were all there to be unlocked.

After watching a video titled “How I Use My Rossum Panharmonium (Part 1)” by Baséput I noticed something. The source he used is fairly sparse. I had been using full melody lines as a source and it hadn’t worked out at all. He was using the granular-like output from Morphagene as a source, which is fairly sparse, and had a beautiful result with just a couple of knob twists. Depending on your settings, just a second of a Morphagene output could hold an entire piece’s worth of sonic info. With that info in mind, I decided to use the mixed delays as my input into Panharmonium. A few more tweaks to the delays to give me shorter repeats, plus an octave up on one of them, and I felt like I had good sonic ingredients for Panharmonium to shine.

And it worked. Despite never having anything special from Panharmonium before, I was greeted almost instantly with exactly the sorts of sounds I’d always imagined making with it. In just 1 patch the Panharmonium turned from a module I had listed for sale into one I doubt I’d ever get rid of. The results are an almost choir-like accompaniment, which gives the entire piece an ethereal feel, which was pretty much what I was going for. More on this to come.

Modules Used:
Mutable Instruments Marbles
uO_C
Expert Sleepers Disting Ex
ST Modular SVCA
Holocene Electronics Non-Linear Memory Machine
Venus Instruments Veno-Echo
Rossum Electro-Music Panharmonium
AI Synthesis 018 Stereo Matrix Mixer
Nonlinearcircuits The Hypster
Nonlinearcircuits Triple Sloth
Nonlinearcircuits Divide & Conquer
Nonlinearcircuits Stochaos
Intellijel Quad VCA
Xaoc Devices Warna II
Xaoc Devices Zadar
Knob Farm Ferry
Oto Bam

Performed and recorded in 1 take in AUM via the Expert Sleepers ES-9.

Pinging Filters in Stereo

Pinging filters in one of my favorite modular patches. You can get lots of different tones, creating very LPG-ish sounds with beautiful ringing decays, booming drums, or melodic clicks and chirps to color your modular masterpiece.

The traditional way to patch a filter for pinging is really simple. Set the resonance on your filter on the verge of self oscillation, run a trigger or gate into the INPUT of your filter, get some pitch CV into the v/Oct input or the filter cutoff CV input. Now patch the output of your filter to your output (or through any effects you might want), and you’re in business. But there’s an inherent problem in many modern filters when patched in this way.

Pinging filters.
Traditional pinging patch.

Oftentimes the input will ping on the rising edge of your trigger, then click on the falling edge, which is not ideal. No one wants clicks in their music, except when you do, so we need a work around.

Some filters, in an effort to mitigate the click problem, have a “Strike” or “Ping” input meant for gates and triggers. The Joranalogue Audio Designs Filter 8 and INSTRUō I-ō47 are 2 examples, as well as the 2 filters I used in this patch.

No “Ping” input? No problem.

For filters without a dedicated input for pinging, simply patch your trigger or gate to an envelope generator with a snappy envelope. A very fast (or even no) attack and a short decay work well. Adjust the decay of your envelope and the resonance on your filter to affect the tail of the ping. It may take a bit of fiddling, and a little can go a long way, but your perfect tail is in there. Hopefully. Patch the filter output to your output module, and on every trigger you’ll hear a new note.

Make Note: Some filters are better pingers than others. Some don’t process v/oct well, or maybe the resonance is too finicky to get the ping you’re lusting after, so if you don’t like what you get with your first choice, move on to another. That said, most filters should work well.

But this post isn’t about just pinging a filter. It’s about doing it in stereo. And while I could tell you that this method is possible with just 1 filter (it totally is), this patch uses 2 independent filters for pinging, and a stereo filter for effect.

In practice pinging 2 filters isn’t any more difficult than pinging a single filter. You simply repeat the patching process with a different filter after you’ve done it once. And rather than having a single sequence for the both of them, we’re using 2 random sequences, that are triggered randomly using a random gate skipper.

We start, as we most often do, with the clock. In this patch, we have the clock feeding 2 separate S&H generators, which will put out unrelated, random CV sequences. Both of these sequences then go through a pitch quantizer before being sent to the v/oct inputs on the filters. The sequences may be different, but we at least want them in the same key (unless you really like dissonance) for aural continuity. The clock also sends a trigger to a random gate skipper, which will allow only a subset of those triggers to pass through, ensuring that the 2 filters never receive the same beat sequence, providing stereo movement and depth. The gate skipper also send triggers to the final stereo filter, and an envelope generator, which is also modulating the filter. Yet another clock signal is sent to the delay to ensure our repeats are in time. The final clock signal is being sent to yet another Random Generator so that it can provide modulation to the final stereo effects filter.

Once triggered, the filters will send their quantized pings to a delay (pings seem to beg for delay), before moving on to the final stereo filter before going to the output. Listen to the result below!

Modules Used:


ALM Busy Circuits Pamela’s New Workout (Clock)
CuteLab Missed Opportunities (Random Gate Skipper)
Frap Tools Sapél (Random)
CalSynth uO_C (Pitch Quantizer)
Joranalogue Filter 8 (Pinging Filter)
Instruō I-ō47 (Pinging Filter)
Make Noise Maths (Envelope Generator)
Make Noise QPAS (FX Filter)
Make Noise Wogglebug (Random)
Venus Instruments Veno-Echo (Delay)

eleaf · Filter Pinging

0:00
0:00