A Resonance Wobble Experiment

One of the beautiful things about eurorack is the many happy accidents that we all run into on occasion. Those times when some combination of conditions present at just the right moment seems to produce something magical. You don’t necessarily know what got you there, but nonetheless, here it is and it’s glorious. Though we may not always know exactly what leads to these enigmatic moments of splendor, there are things we can consider when seeking to be able to use those sounds as part of your artistic arsenal. It’s one thing to hap into something beautiful, however you might describe that term, but it’s another thing altogether to reproduce whatever it is you heard to make that magic an intentional part of your sound. To play it, rather than have it fall in your lap.

A couple of days after Jamuary concluded I made a patch on the Make Noise synth that made me stand up and stare. There was a whisper. An oscillator speaking softly into a filter’s ear, quivering as it tried to muster enough courage to get sound out. It wasn’t unlike bowing a string as lightly as possible, or trying to play a wind instrument as quietly as one can. There was a vulnerability in the voice, seemingly lacking the confidence to speak, or like trying to speak when you’re crying and your lips quiver. There was a wobble that was absolutely intoxicating, and I was set on trying to reproduce that wobble.

When I first set out to try and recreate this sound, I first isolated the conditions of the patch I wanted to emulate. Of course oscillators can’t speak softly. They only know one output level, generally speaking. I documented every patch connection and knob setting from this sub-patch. I verified modulation sources and any peculiarities. I thought about this patch a lot, writing extensively in my Notability patch book, and narrowed it down to three factors. At least theoretically.

  1. As low a level going into the filter as possible. On my original patch, I used QPAS as my first filter, and controlled levels with the input VCA knob. I initially did this out of necessity because the other voice in the patch was very quiet by its nature, and when any real level was given to the oscillator going through QPAS it was too loud. I discovered later that night that the lower the level, the better the conditions for interesting wobbles. If your filter does not have input level control, you can use an attenuator or VCA before going to the filter input.
  2. A filter with some fairly aggressive resonance. It need not scream like a Polivoks, but the resonance needs to be pronounced before it goes into self oscillation. If the resonance is non-linear, it’s even better. I’ve also surmised, perhaps errantly, that a vactrol-based filter would be better suited to this job because of the inherent drag and voltage drift of vactrols. The filter creating pronounced wobble in my Make Noise patch was QMMG, a vactrol-based filter, processing a signal that had already gone through QPAS. I could be wrong, but my experiments trying to reproduce the wobble seem to bear out this conclusion. I don’t have a vactrol-based filter in my main synth, but none of the filters I used in my experiments had the same sort of wobble as that produced by the QMMG.
  3. A slow moving modulation signal that moves the cutoff frequency through the fundamental frequency of the note. I’ve found the slower the better, but there are diminishing returns to that proposition. When you add resonance to a filter, you’re creating a small hump in the EQ curve at the cutoff frequency by feeding it back into the filter’s input. When that cutoff frequency intersects and passes through the fundamental frequency of whatever signal you’re passing through it, you get a small wobble. The resonance itself and the modulator’s frequency and shape can alter that wobble some, and can change its character, as do any curves you might put on your modulating signal.

Of course all of this was theoretical, and much of it still is, even if I’ve received some form of verification via Google AI, and tangible signs that I’m on the right track through my subsequent experimentation.1

When I set out to make a patch yesterday, my goal was to first experiment with recreating filter wobble through my main synth where I have a plethora of filters of all sorts. My first thought was to experiment wholly within the Frap Tools Cunsa. I can create sine waves with the first filter and still have three filters with which to experiment, all with normalized patching to make things simple. I was pretty quickly able to create some wobble using my three guideposts listed above, but it was very consistent, and exciting as it was to know I was on the right path, I felt that perhaps the Cunsa was simply too polite a filter to get the best results. Abandoning Cunsa, I next went to the Joranalogue Generate 3 feeding Filter 8, but I never felt like I could get anything close to what I wanted. The cutoff was always too high, and I couldn’t tame the harmonics in a way I wanted. So I switched to a single sine wave from Filter 8 feeding the Bizarre Jezabel Seju Stereo, which was okay, but not special, so I went to the Pkhia, which didn’t work very well. I moved on to the Pkhi Mk3, and had a promising start, but it didn’t progress much. Finally I went to the Blossom, a multi-output filter inspired by the legendary Mannequins Three Sisters, and I heard…something interesting. The wobble was there, and had a bit more character than the simple hump like the rest of the filters. I had found the subject for the rest of the day’s experiments. I spent well over two hours exploring different filters, and of those I tried, a simple sine wave into Blossom was definitely the most compelling. I have other filters that I think are good candidates, namely the Verbos Amp & Tone and Instruo I-ō47, but neither of those cases were in the synth when I turned it on. I’m definitely interested in trying those filters, as both have just the right kind of resonance, I think, to be compelling options.

After I’d finalized a base sound I wanted to use for the rest of the patch, a single sine wave into a resonant low pass filter, I worked up a sequence in C Lydian on the very excellent Doboz T12, and went to work. Like the voice used in my Make Noise patch, this voice would also be completely un-gated, sauntering along, only being level modulated in the filter by the slowly moving function of a cycling Contour 1. The cutoff point is set lower than the lowest fundamental frequency so that there would be times when no notes of the sequence come through. Because Blossom doesn’t have level input control, I ran the output of Filter 8 through an attenuator to initially make the sound as quiet as possible while still being (mostly) audible.

I decided to use a staggered clock. One that is gated by a clock divider, so as to never have continuous repetition. I multed a single x1 clock output from the Sitka Gravity to the Nonlinearcircuits Divide & Conquer in order to create my gate. Because the Gravity is in its infancy, there are several basic things it can’t do. As of now, Gravity’s clock (and sequencer) only outputs triggers, and not gates, so I couldn’t use the duty cycle of a gate output (like those on Pamela’s Pro (and New, and OG) Workout) to gate the x1 trigger that would ultimately go to the clock input on the sequencer. I wanted the clock to start and stop every five beats, and Divide & Conquer was able to provide a gate that enabled that staggered clock for my sequence to follow. The sequence itself is simple. It’s a couple of scale lines going up, with a very low probability (11%) of getting a quantized random pitch within seven semitones (a fifth) of any given step of the sequence. But because the cutoff frequency of the filter goes below the lowest fundamental pitch, the sequence flows in and out and isn’t steady. Notes hold in beautiful ways, and the sequence doesn’t repeat despite being only 16 steps long.

Once through the now occasionally wobbling filter, the audio went straight to the Bizarre Jezabel Mimosa. Mimosa is what I consider to be the most beautiful distortion I’ve heard in any format, short of very high dollar guitar amps. Of course the word beautiful is doing a lot of heavy lifting here, but what I mean is that it can heavily distort something, while still allowing the source to shine. It adds life, even when the dials are pinned. No matter what, you can always let some of the original dry signal through which helps keep shape in the audio regardless of the amount of distortion is applied. From gentle piano notes and sine waves (such as those in today’s patch) to ripping saw clouds Mimosa just does the right things whether using it for some gentle saturation or full on sonic destruction.

In this patch Mimosa started gently, with both the output volume and distortion amount both turned low. As the piece progressed, gain was adjusted upwards at multiple points. The first place was the original audio signal on the way into the Blossom. This allowed its resonance to growl a bit more rather than wobble. Higher input levels into the filter also mean higher output levels from the filter, and Mimosa is very sensitive to input level. Even at the same knob settings, input level is a crucial determinant of the final sound. Lower levels at the input might just have a bit of coloration or slight crunch, whereas loud sounds will rip or soar. It’s part of Mimosa’s magic. After I adjusted the initial input as loud as I dared, I started to slowly raise the output volume and distortion amount on Mimosa, as well as the amount of wet signal. From gently whispering and quivering to finally finding one’s voice to sing, all from nothing but subtle gain changes along the way. From Mimosa, the audio went to a new addition in the synth; the Addac Systems Addac814 6×6 Stereo Matrix Mixer to be distrusted to several effects.

It should be reiterated here that every sound is this patch arises from one single sine wave fed by one simple sequence, with but a single parameter being modulated by a lone triangle function (the filter cutoff). Of course that isn’t the only sound in total. That lone sine wave is repeated all over the place with overlapping delays, looped with four simultaneous digital tape heads and a delay of its own, and reverberated. The first delay, a Bizarre Jezabel Quarté Mk2, mostly added some lovely texture. A bit of a wash of decays in the wake of the melody, its gritty tail disintegrating into nothingness, which added depth and color. Repeats were set to moderately long, with a slow(er) delay time. With the PT2399 delay chips, the longer the delay time, the noisier it will be. The second delay was an Olivia Artz Modular Time Machine, with 4 active taps. It’s clear digital voice echoing the distorted sines near perfectly. Both delays are set to different times which really served to fill out space and maximize this one simple voice with the most basic of sound waves.

As beautiful as this very simple sequence was, I wanted to see if I couldn’t perform some complimentary embellishments, and decided to once again delve into the Cutlasses Instruments Gloop. I’ve only used Gloop a couple of times, but it’s already captured my attention. Some modules take some time to gel with. Despite some sloppy transitioning in my first couple of uses, I immediately took to Gloop. Its interface is (mostly) intuitive, and it’s a capable looper with some very cool tricks. It’s pretty easy to create compelling loops with Gloop. That said, it does have some drawbacks, at least in its current iteration. Though it’s packed with some clever effects that can be eminently useful with a looper, delay, reverb, and a host of tape-related effects like tape degradation, wobble, noise, and saturation, these effects can only be used on one channel or the other, and not both. Though Gloop has two outputs, it’s not really stereo, but dual mono. Each of the four heads can be panned in a stereo fashion and be used in one or both outputs as if it were a stereo signal, but for reasons I don’t understand the effects can only be used in one output at a time. This imbalance can definitely be a problem when trying to create a consistent stereo field. I was hoping to use the degradation effect, wherein the audio degrades as it would on a tape machine with each successive loop, fading out to nothing after a time. In loopers this is generally simulated by constantly low passing the signal at progressively lower cutoff frequencies in order to gradually roll off the highs. It’s a crucial component of Frippertronics, for instance. Allowing a loop to fade to nothing is also a beautiful way to end a track, and unfortunately I can’t do that with Gloop while using both output channels. In lieu of using Gloop to add tape hiss, I was able to add noise to both channels in the mixer via the very excellent DAW Cassette by Klevgrand, but that was an improvised half-measure. I think I can patch a workaround, but it definitely won’t function in quite the same way. A slow moving negative function into a wide open filter cutoff should get me at least part of the way there. Timing would be an issue. How long should this envelope be? What happens if I get to the end of the function, and I haven’t pressed stop on the recorder? Will the cutoff reset to fully open? That would be bad. But those are problems for another day.

I recorded a length of the sequence to Gloop, then while the sequence continued to play configured the four play heads and slowly started to raise the level on the looper, while lowering the level of the continuously sauntering sequence. Though this transition isn’t perfect, it’s much smoother than in tries past. I would use a crossfader like the WMD AXYS to more smoothly move between the two parts, but because the individual voices were being multitracked separately, I crossfaded in the mixer by hand using the Michigan Synth Works XVI Faderbank CV and Midi controller. The first and fourth heads were hard panned left and right at 2x forward and 4x in reverse respectively, while heads two and three were panned in the middle at 1x forward and .5x forward. I manually played the loop size and location within the loop of all four heads until it I manually faded out the hard panned parts before fading out the base melody and its half speed sibling. But not even Gloop was without its own dedicated delay, the ever-excellent Venus Instruments Veno-Echo. I used a x4 output from Gravity, with a /3 clock division set in Veno-Echo, which gave me a dotted eighth note delay, an always interesting pattern.

Both voices were mixed together in AUM and sent to the Walrus Audio Slöer using the Rain algorithm with almost no diffusion, and the clock speed at its slowest, adding to an already textured outcome. A medium long decay and high modulation finish off the track.

Modules Used:
Sitka Gravity
Nonlinearcircuits Divide & Conquer
Doboz T12
Joranalogue Filter 8
Joranalogue Contour 1
Bizarre Jezabel Blossom
Bizarre Jezabel Mimosa
Bizarre Jezabel Quarté Mk2
Addac Systems Addac814 6×6 Stereo Matrix Mixer
Olivia Artz Modular Time Machine
Cutlasses Instruments Gloop
Venus Instruments Veno-Echo
Intellijel Amps
ST Modular SVCA
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Software Used:
Klevgrand DAW Cassette
Toneboosters TB Equalizer 4

Improvised and recorded in one take on iPad in AUM via the Expert Sleepers ES-9.

  1. I put very little stock in the accuracy of AI at this stage in its development. However, it stated the same three conditions I had independently surmised, and so choose to engage in a bit of sweet, sweet confirmation bias. ↩︎

Jamuary 2525

Today’s Jamuary is not only a classic patch, it’s a meme in the modular world. With a small twist. That’s right, it’s Marbles > Rings > Beads. Although the true classic is Rings > Clouds, Beads is a fine substitute. I haven’t used any of my Mutable Instruments modules in a long time. I removed that case from the synth a few months ago in order to expand it, and while I was filling it up, it went completely unused. It’s one of the downsides of having a modular modular synth. There’s always something missing. Beads had been a staple in many of my patches until I pulled it out. To the MI case I added several choice modules. Blades, Stages, Tides v2, and am still in the process of adding one last module before the case will be complete. But I decided that today I’d do a patch I haven’t done in a very long time.

Rings into Clouds is a eurorack gateway drug. It’s a patch that many of us try at least once, and for good reason. Some people never venture any further and come up with something new every time. Such is the depth of this venerable duo. But Beads, although borne of, is not Clouds. You can do many similar things, but they are each their own instrument. Like so many Rings > Clouds patches before, this Rings > Beads patch all started with Marbles, and wonderfully musical random CV and gate generator, spitting out random CV to Rings’ v/oct input. With Rings a gate or trigger isn’t necessary. It detects changes in incoming CV and automatically generates notes when the CV has sufficiently changed. It’s a brilliant design, and dead simple to use. It’s no wonder why Rings is one of the first modules so many of us try. I know it was one of my first modules, and despite having other methods of producing the same sounds,1 it will never leave my synth. You needn’t know any fancy synthesis techniques to get incredibly beautiful sounds right out of the gate. Marbles was set to a moderately slow tempo with lots of jitter as to not become regular, and off we went. Set in Sympathetic Strings mode, Rings was left completely unmodulated. As Rings received new pitch information it sent notes to the venerable (and infamous) Beads, Mutable Instruments’ final module before closing shop in 2022.2

I’ve had Beads since its initial release. I’m one of those lucky enough to have been able to get one, as after the second batch was shipped a few months later, all production stopped, prices soared, and for a while became unobtainium. It took me a while, perhaps a year, to come to grips with Beads. The first couple of patches were a cacophony of grains overtaking everything else in the patch. It was messy, unruly, and I couldn’t figure out how to tame it. So I set it aside for a while. Once I became more familiar with the building blocks of granular synthesis (and synthesis in general) and how they worked in concert, I gave it another try and was bewildered by its beauty. Ever since then I’ve been hooked, and it’s become a tool that would be almost inconceivable to lose.

In this patch Beads was set to a moderately low number of randomly generated grains, while fairly heavily modulating Time, scanning the recording buffer, Shape, changing the composition of each grain, and Size from small to moderately large. This modulation allowed grains that were quite plucky to much longer “slides” through the buffer. Long grains can be a very interesting sound, and one I’ve explored some, but will seek to experiment with more in the future. The Quality setting is in Scorched Cassette mode, both for the longer buffer, as well as the saturated goodness it imparts on the audio. A little bit of blowout and compression goes a long way.

Once out of Beads, the audio went to Blades for some light, somewhere-between -Bandpass-and-High Pass Filtering, and the very slightest bit of Drive. Blades is new-to-me module I haven’t used before this patch, and now that the MI case is back in action, I’ll definitely be using it much more.

The bass drone is courtesy of Plaits playing what amounts to a very (very) lightly FM’d sine wave, with some modulation only to the Morph CV input to give it a small bit of motion so as not to become stale. I have no idea what note it is that’s droning away. I simply tuned it to the Rings output by ear and called it a day.

All modulation throughout the patch was done by Tides v2. This was also my first time using Tides, so I have no idea what mode it was in, or generally how it functions. What I do know is that I managed to get a quad of slow LFOs that are all phasing in and out of each other. I’ll have to read the manual to get a better idea of how it works, but it’s hard to mess up slow modulation sources too badly. One frustrating instance during making this patch was that although I had installed Stages in the case as part of the expansion, I hadn’t actually plugged it in. So despite desiring more modulation, I didn’t have access to any inside the MI case other than Tides, and so opted to not use any more modulation at all. I wanted as much as possible done only with this case, only using other modules for getting from the case to the interface.

With one exception.

One module I’ve also had for a very long time is the Qu-Bit Electronix Data Bender. Along with Rings (and Typhoon, one of the many versions of Clouds), it was one of the very first Eurorack modules I bought once I was bit by the bug. I used it a bunch initially to learn how, even if I’ve forgotten most of it after a few years, but haven’t really touched it since, generally favoring granular synthesis for glitchiness. Data Bender has a very unique sound. It’s the sound of failure. CD skipping, digital buffer errors, tape malfunctions, bit and sample reduction, and any other sort of audio failure, analog and/or digital, you can imagine. I’ve tended to enjoy its take on digital errors when I’ve used it and when I hear it in other people’s work. A sort of glitchiness that harkens back to the earliest days of my musical awakening as an adolescent as I was forming my own aesthetic in music. The days of CD players in the 80s that would skip if you farted across the room, and the multitude of buffering errors in the newly emerging internet through players like WinAmp were commonplace. Data Bender makes that failure musical. I would have thought that two different forms of glitch, from Beads and Data Bender might have been too much. But the effects were sufficiently different that they complemented rather than competed against one another.

Modules Used:
Mutable Instruments Marbles
Mutable Instruments Rings
Mutable Instruments Beads
Mutable Instruments Blades
Mutable Instruments Plaits
Mutable Instruments Tides v2
Qu-Bit Electronix Data Bender
AI Synthesis 018 Matrix Mixer

Outboard Gear Used:
Walrus Audio Slöer

  1. Since Rings, and all of the Mutable Instruments modules, have been open sourced, several variations have appeared from miniaturized versions like Rangoon and nanoRings, to the software being ported to multifunction modules like the Expert Sleepers Disting Ex and NT. ↩︎
  2. Emilie Gillet, the former head of Mutable Instruments, is said to have created Beads in order to address “flaws” in how most people seemed to use Clouds, or to correct perceived shortcomings in how Clouds functioned. Although it took nearly three years after Clouds’ discontinuation to finally release Beads and was highly anticipated, it initially had a mixed reception. Now it’s the only Mutable Instruments module that hasn’t been released to open source. ↩︎

Jamuary 2522

Today was a much needed day off from work. After two long shifts in the cold, I was looking forward to taking my time while patching in my warm studio today. The last couple of days had been last minute jobs on the iPad, and I don’t like being rushed. The process was unsatisfying, and the outcome suffered. They’re not terrible sketches by any stretch, and absolutely gave me ideas for future use, but they just feel rickety and incomplete to me. Such is the nature of Jamuary.

As I was in the midst of discussion in a Discord earlier this afternoon, the conversation turned to the new 4ms MetaModule, a module capable of running VCV patches. A couple of others and I had chimed in voicing our preference for the also new Expert Sleepers Disting NT. I also mentioned that I needed to learn how to use the Disting NT, which set off a lightbulb moment. This is Jamuary, and I had planned to make a full modular patch today. I’d use this opportunity to learn better how to use the algorithm(s) which prompted the purchase in the first place, even if it can do so much more.

I have created a lot of patches over the last year that use the Disting Ex in Polyphonic Multisample mode. I love that mode, but the Disting Ex has a user interface only a mother could love. It has a lot of great features, but the screen is incredibly small which is tough on these almost-50 eyes, and the interface awkward. Each algorithm has a million options, and navigating to make changes is a hassle. So much so that I literally only ever used Disting Ex in Poly Multisample mode. The new NT promised a much bigger screen, a much friendlier interface, and that it could run several algorithms simultaneously. I wanted that superior interface, even if it couldn’t do anything more (which of course it can do a lot more). It’s totally possible to have a multi-voice patch complete with FX while only using output cables. It really is an incredible machine, but there is a learning curve. I wanted today to be about making my way up that curve, even if just a little bit.

I’ve only used the NT once. It was just before Christmas, and I had just received it. Between my brother and I, we were able to squeeze just a drop or two of juice from it (Day 2, Patch 2). I left frustrated, but not ready to give up on it, because that drop was sweet. But today was a bit different. Shortly before getting ready to patch, I watched an introductory video for the NT to see if I could find my bearings a bit, and learn better how to navigate it, and how to leverage using more than one algorithm at a time. After firing up the synth, I immediately starting digging through menus and setting up a simple patch, but with a twist. I would only run a quantizer into the Poly Multisample algorithm, but rather than a single gate and cv source, I would use four pairs of gates and CV, all to be quantized, and then sent via Aux busses inside the NT to the Poly Multisample which was set up to receive the quad set. Though programming wasn’t completely smooth, it went easy enough, and once I stumbled in the menus a couple of times, navigation eased, and programming came together exactly like I’d hoped without a hitch.

The patch started with four cycling functions from the Addac506 Stochastic Function Generator. The outputs were split and sent to both the Nonlinearcircuits Numberwang for gate generation, and Let’s Splosh for pitch CV. Four outputs from each went to Disting NT, with the CV being attenuated and offset with the Vostok Instruments Asset to varying degrees before going to the input pairs. Once the signals reached Disting, they were quantized into C minor, and passed on to the LABS Soft Piano sample library, before coming out of stereo outputs and directly into the AI 018 Stereo Matrix Mixer.

From the mixer, the Soft Piano audio was sent to the Holocene Electronics Non-Linear Memory Machine. Set at a medium slow delay time, the freeze section was gated and modulated by a cycling function from the Frap Tools Falistri. The End Of Cycle trigger turned the Freeze on and off, while a clock divided (/2) version of that trigger gated the function itself, which scanned the buffer for some granular-like sounds. The clock-divided trigger also gated an offset signal that switched the output to an octave up while the buffer was scanning. This part of the patch was tricky. I tried several different methods before I made a realization about the nature of the gate I was using to trigger freeze and scan the buffer. Because it was the End of Cycle output and the function had not yet started, it was already high, and on the first count in the clock divider. Once I started the cycle, the cycling function and resulting trigger, a simple /2 output of Divide & Conquer worked perfectly to keep the freeze function, scanning, and offset to the octave up in sync. The result is almost Data Bender-like in the best of ways.

In order to fill in some space between the sparse piano notes being played, I sent both the piano and NLMM to the Rossum Electro-Music Panharmonium, which went through the Venus Instruments Veno-Echo at about a 50/50 mix. I set unsync’d, medium-long delay times on each channel, and allowed it to bring some motion to Panharmonium before going to the output mixer.

Everything went through the always lovely Walrus Audio Slöer for some thickly modulated reverb.

Modules Used:
Addac Systems Addac506 Stochastic Function Generator
Nonlinearcircuits Numberwang
Nonlinearcircuits Let’s Splosh
Nonlinearcircuits Divide & Conquer
Vostok Instruments Asset
Expert Sleepers Disting NT
Holocene Electronics Non-Linear Memory Machine
Rossum Electro-Music Panharmonium
Venus Instruments Veno-Echo
Intellijel Amps
Frap Tools Falistri
Knob Farm Ferry
ST Modular SCVA

Outboard Gear Used:
Walrus Audio Slöer

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

Jamuary 2506

I like wavetables and I like drones. Jamuary 6 saw both. A modulated quad wavetable LFO modulating the levels of a quad wavetable oscillator. It’s a patch I’ve been wanting to try for a while, and Jamuary is the perfect time to experiment with new techniques.

There are a lot of moving parts in this patch. The base creating the ever-changing drone is four unsynced LFOs from Kermit Mk3 controlling the levels of the four outputs from the E370 in the Intellijel Amps. These four outputs were patched to the ST Modular Sum Mix & Pan and then to the mixer. The pan CV inputs of the latter three channels were modulated by the Addac506 Stochastic Function Generator. The stereo signal from Sum Mix & Pan went to both the output as well as to a second mixer for summing to mono before being routed to the Verbos Multi-Delay Processor. The mono output of the MDP, which only has the dry signal,1 went to the output mixer, while two of the taps were routed to the Verbos Scan & Pan for hard panning left and right. All three of these signals were mixed and sent to the output.

Although I like the drive the MDP created, it largely defeated the panning of the three E370 outputs. I’d have been better served to run the stereo signal from the Sum Mix & Pan to a stereo distortion for some added drive so as not to throw a cover over subtle movement in the stereo space, but I do like the overall result. The MDP is a fantastic source for overdrive, and is a different sort than a full blown distortion like Mimosa. It’s deep and warm, like a fuzzy blanket on a cold winter day.

There’s lots of modulation too, with the bulk of it being supplied by the Nonlinearcircuits The Hypster fed a Let’s Splosh, with its outputs modulating the waves in both the E370, and three of the four channels of Kermit. Let’s Splosh self-modulated both Gain and Damping to keep its outputs in constant flux.

To accompany the drone proper, I sent the panning wavetables from the Sum Mix & Pan and stereo delay taps from the MDP to a pair of unmodulated Dradds. Both are in Grain Mode, and both are time stretching, with the left channel in reverse at about 20% speed and the and the right channel in forward at a slow crawl. It’s a bit difficult to pick out in the mix, but the overall sound is very different without it, and the final result benefits greatly with it.

The final touch to the patch are the drips and crickets. This oscillator and envelope are both from Falistri, sent through the Holocene Non-Linear Memory Machine. Pitch and random triggering was provided by Sapel. The last free channel of the Addac506 controlled both the Freeze and Scanning of the buffer. Its EOF trigger turned Freeze on and off, with the EOR gate output gating the function output in a VCA, which was scanning the buffer. This little sub-patch took a little while to figure out, but the results are rewarding. I’d been wanting to mess with scanning the buffer of the NLMM ever since I heard this patch by Ras Thavas, and today seemed like the day. It was a fun patch that I’ll be sure to explore further in the future.

Modules Used:
Industrial Music Electronics Kermit Mk3
Synthesis Technology E370
Nonlinearcircuits The Hypster
Nonlinearcircuits Let’s Splosh
Verbos Multi-Delay Processor
Verbos Scan and Pan
Addac Systems Addac506 Stochastic Function Generator
ST Modular Sum Mix & Pan
Frap Tools Falistri
Frap Tools Sapel
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Delays have long been used as preamps without the delay, and the MDP will be no exception. ↩︎

A Xaoc Devices Exploration

It had been a while since I used my Xaoc Devices case for anything beyond reaching for a couple modulators like Zadar and Batumi II. I’ve always loved the Odessa, even with its faults, and I had an itch to use it.

I’m not going to detail this patch too much.

A square wave from Batumi II acts as a clock for Erfurt’s forward counting. A second square wave output hits Erfurt’s reverse counting input. Four gate outputs from Erfurt (Gates 1-4) are patched to Samara II, with each gate being attenuated to a particular note.
As these gates go high, they sent pitch to the five v/oct inputs on Hel, Odessa’s expander, creating a mix of full and arpeggiated chords (no idea what Odessa is tuned to). The Fundamental, Even, and Odd outputs are mixed down to stereo, and sent to Zagzreb. Zagzreb’s Bandpass L/R outputs go to the mixer, while the L High Pass output is patched to Sarajewo for some analog delay, with Taps one and three output to the mixer.

In a mood to try something new, I ran the dry signal to the the Optotronics Stereo Lockhart Wavefolder. I wish I had sent that signal to the delay as well. It’s a pretty cool module, though I’m not really sure what everything but the fold knobs are doing. Looks like it’s time to dg into that one.

All three signals, Odessa/Zagzreb, Sarajewo, and the Wavefolder go to the Vongon Ultrasheer for some reverb.

Uncharacteristically, I also did a smidge of post processing, running the recording through some compression and EQ. I’m new to using both, but I am very happy with the sonic results.

Modules Used:
Xaoc Devices Batumi II and Poti II
Xaoc Devices Lipsk
Xaoc Devices Erfurt
Xaoc Devices Samara II
Xaoc Devices Odessa
Xaoc Devices Zagzreb
Xaoc Devices Sarajewo
Xaoc Devices Zadar
Xaoc Devices Tallin
Xaoc Devices Warna II
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Optotronics Stereo Lockhart Wavefolder
Knob Farm Ferry

Outboard Gear Used:
Vongon Ultrasheer

Plugins Used:
ToneBoosters TB Equalizer
Audio Damage Rough Rider

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

0:00
0:00