Jamuary 2513

I hit record on the patch at 11:56pm EST. It counts. A even longer day at work than yesterday, but I was able to make it in time.

I started tonight with another feedback patch, but was completely uninspired, so went to a Make Noise Jam. René v2 is an incredibly good sequencer for live jamming. I’m not very good at sequencing, but René doesn’t care. It just works and things flow freely. Spectraphon is exceeding all expectations at this point. It sounds friggin’ good.

The quick and dirty….

  • X Channel controls Spectraphon A Odd/Even outputs in QMMG Channels 1 and 2.
  • Y Channel controls Spectraphon B Odd/Even outputs in QMMG Channels 4 and 3.
  • C Channel sends pitch to QPAS, which is pinging away to a steady clock, but it’s input is faded in and out by a cycling Function via its VCA.
  • Wogglebug, Maths, and the other Function do some modulation to Partials, Slide, Radiance L and R, and QPAS’ Frequency.
  • All three voices mixed in DXG and sent through Mimeophon, then the Maneco Labs Otterley Reverb.

This patch was really fun and making it exemplifies Make Noise’s strengths as instrument designers. The cohesiveness of the modules as a set, and the physical UI are really conducive to just jamming out and having fun.

Modules Used:
Make Noise René v2
Make Noise Spectraphon
Make Noise Tempi
Make Noise QMMG
Make Noise QPAS
Make Noise Maths
Make Noise Function
Make Noise Wogglebug
Make Noise Mimeophon
Make Noise DXG
Maneco Labs Otterley

Improvised and recorded in one take in AUM via the Expert Sleepers ES-10 and Arturia AudioFuse.

Jamuary 2512

I had to work long hours today, and my back hurts bad, but I still wanted to put something together to keep Jamuary plugging along. Normally on days like this I would have done a quick patch on the iPad, but today I decided on a reasonably simple Make Noise feedback patch, using a very similar patch to my first feedback exploration. I need work on my feedback patching, but there are definitely many nice parts.

The quick and dirty notes:

QPAS L LP output > Mimeophon L Input
Mimeophon L Output > Output mixer AND QPAS L Input
Mimeophon R Output > Output mixer

With this configuration you’re monitoring from the Left and Right Mimeophon outputs. I also added a dark and dirty reverb, the Maneco Labs Otterley, before going to the output for a little extra murkiness.

Modules Used:
Make Noise QPAS
Make Noise Mimeophon
Make Noise Maths
Make Noise Function
Make Noise Wogglebug
Maneco Labs Otterley

Improvised and recorded in one take in AUM via the Expert Sleepers ES-10 and Arturia AudioFuse.

Jamuary 2511

It’s been a while since I’d played my Make Noise synth. It’s not part of my main synth, but down in my media room where I spend time to myself at night. Knowing my work schedule today, I knew that I wouldn’t have time to make a patch on the main synth, and I wanted more than just the iPad. So I made sure that tonight would be my return to this wonderful instrument. Only today I had a new addition. After dealing with a few technical difficulties with my audio interface, I was ready to go.

I was never really enthused by Spectraphon. Lots of people had an immediate case of GAS when it was announced, but it wasn’t something that drew my interest. Several months after release, I saw a couple of intriguing patches, and decided to revisit the early Spectraphon demo videos to get a decent hold of what it was and was not. Upon release, its resynthesis capability was the emphasis of most synthesists, and it turns out I was more interested in it being an oscillator, so when I found one at a decent price, I ordered it. Though I’ve had it for a couple of months, I hadn’t installed it until tonight with this very patch in mind.

Jamuary 2511 was inspired by my recent patch, Jamuary 2505, which used the cascading envelopes from the Verbos Polyphonic Envelope. Make Noise doesn’t have a cascading envelope, but it’s easy enough to patch up using End Of Rise or End of Cycle outputs that Make Noise’s function generators do have. The envelopes don’t have the same sort of close relationship as with the Polyphonic Envelope, but each function can be tailored specifically how you want them, and each envelope can still be triggered the same way. I used four functions for the drone, each bringing its oscillator in and out of audibility. The first envelope started with Maths Ch1, then to the first Function, and then to a second. The second function generator in Maths won’t work for this patch because it only has a EOC trigger, and I needed EOR gates to trigger the next envelope so as one chord tone was falling, another would be rising. The second Function triggered Contour on the 0-Coast, which in turn completed the cycle by triggering Maths. The chain started with a gate output from 0-Control, before I quickly switched cables. All four envelopes had their decays modulated in one form or another so the recycling chain of chord tones wouldn’t repeat exactly the same.

In total five separate oscillators are used in this patch. Maths Ch1 controlled Spectraphon A’s Odd and Even outputs in DXG. The first Function controlled Spectraphon B’s Odd and Even outputs in DXG. Both sides had Partials, Slide, and Focus modulated to some degree, and oscillator A was having its FM Bus lightly modulated to give it a bit of growl. The second Function controlled STO’s Waveshaper output in QMMG (LPG mode), and Contour controlled 0-Coast’s oscillator with its built-in LPG. Strega just drones on.

All of these signals were mixed in stereo, and sent to QPAS and out of the Smile Pass outputs for some subtle picking out of harmonics and a gooey, gooey swirl. The cutoff frequency was modulated by Maths Ch2, cycling away, and Radiate L and R were modulated by Wogglebug. I gave QPAS increasing amounts of drive as the patch played on.

From QPAS signal went to Mimeophon for some delay and further stereo movement. I had it modulated, but it just didn’t sound very good, so took it all off.

When I first got Strega I was preoccupied by figuring out the best way to stereo-ize it. It doesn’t exactly need it, Strega is a wall of sound kind of wash, but some movement in the stereo field is nice. It turns out I had the answer the whole time: Mimeophon. I hadn’t yet tried that until tonight (for some stupid reason or another), but it’s perfect. QPAS works great too, but it can be too much at times, whereas the Mimeophon is more subtle. I had used a stereo reverb in the past, but I wanted more.

There was also a new pedal in the mix tonight for reverb, the AC Noises Ricorda. My audio interface was giving me fits tonight when I sought to use sends, and so I couldn’t use it how I normally would. I had to control the wet/dry mix on the pedal, which is less than ideal, and it didn’t work exactly how I wanted it to work. The reverb sounds great, even if I’m a bit less enthused with its implementation of granular, which seemed to spit out grains in even intervals. First one, then two at twice the speed, then four, then eight, etc. it just didn’t sound natural. I’ll have to dig in the manual to get that sorted. I also used it to add noise with a scratchy pot, that was pretty cool, even if I didn’t use it enough.

Modules Used:
Maths
Function
Spectraphon
STO
0-Coast
Strega
QPAS
Mimeophon
DXG
QMMG
X-Pan
Wogglebug
0-Control
Knob Farm Ferry

Outboard Gear Used:
AC Noises Ricorda

Improvised and recorded in one take in AUM via the Expert Sleepers ES-10 and Arturia AudioFuse.

Jamuary 2509

Today I decided to go back to a technique I’ve rarely used, and on a much grander scale. I don’t use noise very often, and when I do it tends to be for the obvious use cases. Hit hats, wind and ocean sounds, sprays, etc. I seldomly use it for modulation, and only once have I used noise of any flavor to amplitude modulate an oscillators wave. Today I would do it again, times eight.

I conceived of using noise to modulate all eight harmonics of the Verbos Harmonic Oscillator this morning as my wife was talking to me. I even popped up a bit at the idea, and she took notice.

Wife: “What?”

Me: “Nothing. Just had a thought occur to me. Not even sure if it’s worth a shit.”

I spent the better part of the morning and early afternoon thinking about how I wanted to do this patch. I knew that just noise into each harmonic’s VCA wasn’t it. Then it occurred to me: Chaos! As soon as this though hit my brain I knew what to do, and immediately went to the synth to start patching.

I ran blue noise from Sapel to input 1 of the Intellijel Amps. Amps is a special sort of VCA. Everything cascades. All inputs cascade, as do CV inputs, and there are mixing outputs as well. It’s incredibly flexible. I have four of them chained together to be an eight channel “super VCA/submixer” and it’s been a great choice. Since each input cascades, I only needed one noise input to run this entire section of the patch. Every other channel received that same blue noise input as well. Into each channel’s CV input I patched one of the eight outputs from Nonlinearcircuits The Hypster to chaotically modulate the noise levels of all eight channels independently. Once that was patched, I ran each Amps output to its own Harmonic Oscillator VCA input at random. The only part of this patch that was planned were the first and fifth harmonics, which received their noise modulation from the U and -U outputs on The Hypster as they’re the outputs with the highest amplitude. Each harmonic was slowly brought in by slowly adjusting each CV attenuator individually at random until they were all playing. The nature of chaos means that cycles, even if semi-regular at times, don’t repeat exactly the same, and the harmonics never played the same twice, which kept movement interesting. There were often pauses or redirections in motion for each harmonic. Wonderful.

The mixed HO output was patched to the Multi-Delay Processor. I’ve been taken in by the earthy sound of the Harmonic Oscillator. Each harmonic sine wave has a little hair on it once you give them a little push. The drive in the MultixDelay Processor, both on the input and on each tap output, accentuates that hair in all the right ways. This Verbos ecosystem is warm and inviting, but it can also roar. Taps four and eight were patched to the Verbos Scan & Pan, hard panned left and right, and the output of the MDP, which only had the dry signal, was patched to be in the middle of the mix. This mix created a strong signal with some subtle stereo movement which ended up being fantastic. This stereo signal was then patched to the stereo matrix mixer to be spread around to different effects.

The Rossum Panharmonium fed the Holocene Electronics Non-Linear Memory Machine, which was set with a fairly slow delay and full clockwise smearing, which really smoothed out the Panharmonium’s output for an accompanying drone that floats along beside the ever moving Harmonic Oscillator. This output then fed the Dradd(s), which did its thing in Grain Mode (although I think I forgot to turn on the modulation to both P1 and P2 on both Dradds 😬 – I’m also not convinced it isn’t lost in the mix).

I’m very pleased with how this patch turned out and was a great success at using this technique which I’ll be sure to use more often.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Triple Sloths
Intellijel Amps
Frap Tools Sapel
Verbos Harmonic Oscillator
Verbos Multi-Delay Processor
Verbos Scan & Pan
AI Synthesis 018 Stereo Matrix Mixer
Rossum Electro-Music Panharmonium
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Toneboosters TB Equalizer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

Jamuary 2508

I was short on time yesterday, so put together a reasonably simple patch on the iPad. This Jamuary I’m purposefully trying to use unfamiliar techniques with unfamiliar instruments, and that’s what yesterday was all about in the little time I had. But the patch turned out so beautifully that I wanted to take some time to explore its possibilities in the modular. My first thought was to try and use the Oxi One as a Midi > CV converter so that I might patch the outputs of the Alexandernaut Fugue Machine to something like the Synthesis Technology E370 or some other quad sound source. But despite spending the better part of three hours trying to figure it out,1 I still had achieved no progress and so abandoned the idea and decided to do the next best thing. To patch a more intentional version of Jamuary 2507 into the modular and run it through several effects and see if I couldn’t come up with something new.

The initial patch is the same. Fugue Machine feeds the Klevgrand Speldosa and Decidedly Decent Sampler software instruments in AUM. Yesterday those went to reverb and I called it a day. The patch was beautiful and full of promise. Today went much further. The outputs of both Speldosa and the Cello samples were sent from AUM, via the ES-9 outputs, to the AI Synthesis 018 Stereo Matrix Mixer so that they might be spread around the system to three different effects, shifted and morphed matrix style, and finally sent back to AUM before getting some reverb. Though I’m trying new techniques with new things, that doesn’t mean everything in a single patch, lest I become overwhelmed and frustrated.2 The effects I chose were the Venus Instruments Veno-Echo,3 Pladask Elektrisk Dradd brothers, and the Rossum Electro-Music Panharmonium. Speldosa and the cello samples were sent to the delay, with Speldosa only going to Panharmonium, while the cello only was initially sent to the Dradd(s), before adding the delay to the Dradd(s)’ input, slowly adding more, and allowing those higher pitched notes to be granular-ized and spread through the stereo field. The Dradd(s) really turned out to be the highlight, though the delay isn’t far behind. Panharmonium sounds nice, as it always does, but seemed to get lost when it wasn’t leveled as a prominent voice in the mix at a given moment.

Modules Used:
AI Synthesis 018 Stereo Matrix Mixer
Venus Instruments Veno-Echo
Pladask Elektrisk Dradd(s)
Rossum Electro-Music Panharmonium
Nonlinearcircuits Triple Sloth
CuteLab Missed Opportunities
Calsynth Twiigs
Frap Tools 333
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Alexandernaut Fugue Machine
Klevgrand Speldosa
Decidedly Decent Sampler
Toneboosters TB Equalizer
CoVariant

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. To be fair, I struggle with just about everything with the Oxi One. I really need to revisit it with purpose. ↩︎
  2. I recently suffered that sort of frustration when I put two completely unfamiliar modules in my Xmas 2024 Synth. It was an exercise in frustration when it should have been a relaxing time. ↩︎
  3. I used CoVariant, a now seemingly discontinued midi > cv plugin for the iPad to send out an analog clock from the iPad that is perfectly in sync with the midi clock generated by AUM. I will never delete this plugin as long as it continues to work. It also does midi > CV conversion (but I couldn’t figure it out). ↩︎

Jamuary 2506

I like wavetables and I like drones. Jamuary 6 saw both. A modulated quad wavetable LFO modulating the levels of a quad wavetable oscillator. It’s a patch I’ve been wanting to try for a while, and Jamuary is the perfect time to experiment with new techniques.

There are a lot of moving parts in this patch. The base creating the ever-changing drone is four unsynced LFOs from Kermit Mk3 controlling the levels of the four outputs from the E370 in the Intellijel Amps. These four outputs were patched to the ST Modular Sum Mix & Pan and then to the mixer. The pan CV inputs of the latter three channels were modulated by the Addac506 Stochastic Function Generator. The stereo signal from Sum Mix & Pan went to both the output as well as to a second mixer for summing to mono before being routed to the Verbos Multi-Delay Processor. The mono output of the MDP, which only has the dry signal,1 went to the output mixer, while two of the taps were routed to the Verbos Scan & Pan for hard panning left and right. All three of these signals were mixed and sent to the output.

Although I like the drive the MDP created, it largely defeated the panning of the three E370 outputs. I’d have been better served to run the stereo signal from the Sum Mix & Pan to a stereo distortion for some added drive so as not to throw a cover over subtle movement in the stereo space, but I do like the overall result. The MDP is a fantastic source for overdrive, and is a different sort than a full blown distortion like Mimosa. It’s deep and warm, like a fuzzy blanket on a cold winter day.

There’s lots of modulation too, with the bulk of it being supplied by the Nonlinearcircuits The Hypster fed a Let’s Splosh, with its outputs modulating the waves in both the E370, and three of the four channels of Kermit. Let’s Splosh self-modulated both Gain and Damping to keep its outputs in constant flux.

To accompany the drone proper, I sent the panning wavetables from the Sum Mix & Pan and stereo delay taps from the MDP to a pair of unmodulated Dradds. Both are in Grain Mode, and both are time stretching, with the left channel in reverse at about 20% speed and the and the right channel in forward at a slow crawl. It’s a bit difficult to pick out in the mix, but the overall sound is very different without it, and the final result benefits greatly with it.

The final touch to the patch are the drips and crickets. This oscillator and envelope are both from Falistri, sent through the Holocene Non-Linear Memory Machine. Pitch and random triggering was provided by Sapel. The last free channel of the Addac506 controlled both the Freeze and Scanning of the buffer. Its EOF trigger turned Freeze on and off, with the EOR gate output gating the function output in a VCA, which was scanning the buffer. This little sub-patch took a little while to figure out, but the results are rewarding. I’d been wanting to mess with scanning the buffer of the NLMM ever since I heard this patch by Ras Thavas, and today seemed like the day. It was a fun patch that I’ll be sure to explore further in the future.

Modules Used:
Industrial Music Electronics Kermit Mk3
Synthesis Technology E370
Nonlinearcircuits The Hypster
Nonlinearcircuits Let’s Splosh
Verbos Multi-Delay Processor
Verbos Scan and Pan
Addac Systems Addac506 Stochastic Function Generator
ST Modular Sum Mix & Pan
Frap Tools Falistri
Frap Tools Sapel
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Delays have long been used as preamps without the delay, and the MDP will be no exception. ↩︎

Jamuary 2505 – Two Versions

I was always sure that a Verbos system could do ambient, but it’s not what I read in their brand identity. Mark Verbos, the owner of Verbos, has noted several times in interviews that his main inspiration in both making music and instruments is his love for techno. The sounds his instruments make are raw, and there doesn’t seem a clear path to ambient paradise when I look at Verbos module faceplates. But in an interview I recently watched, Verbos mentioned that one of the first questions he was asked when the Harmonic Oscillator was whether it can do ambient drones, something he hadn’t considered at all when he was designing it. Nearly a decade later we know Verbos systems can used to perform ambient music, but it wasn’t until today, after a couple of days using sequencers and rhythms, that I finally decided to see what I could do.

The patch began with the Polyphonic Envelope, each of the four outputs to a different harmonic of the Harmonic Oscillator, with the All output patched to the fundamental. In a new technique for me, I decided to use blue noise from Sapel as an amplitude modulator for the fifth harmonic, which ended up being fantastic. I followed that up with very short, randomly generated pings to the eighth harmonic. As a means to more beef, I also frequency modulated the HO with its own second harmonic. The Mixed output of the HO was sent first through Amp & Tone for a bit of conditioning and resonance before going to the Multi-Delay Processor. The MDP was set to output the dry signal and some volume level delay taps, while I patched four separate individual delay tap outputs to the Scan & Pan for stereo-ification.

After some fuddling around with the Polyphonic Envelope, I finally got to a nice flow of envelopes, each triggered once the decay stage of the previous envelope begins in a beautiful cascade that cycles over and over. After a bit of figuring out some movement for the patch, I decided it was ready to record. Only this time, I decided on using some final reverb, my every trusty Walrus Audio Slöer, instead of relying solely on the reverb from the MDP. This was a great choice.

Having recorded the patch and still wanting more, I decided to process the Verbos voice through the Panharmonium (crossfaded saw waves) > the Bizarre Jezabel Pkhia, as well as the Dradd(s) to add some movement and edge, and recorded it again, so today we get another bonus patch.

I’m quite happy with how this patch turned out. This is definitely a route I’ll be exploring more in depth this year.

Modules Used:
Verbos Polyphonic Envelope
Verbos Harmonic Oscillator
Verbos Amp & Tone
Verbos Multi-Delay Processor
Verbos Scan & Pan
Verbos Voltage Multistage
Frap Tools Sapel
Frap Tools Falistri
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry
Rossum Electro-Music Panharmonium
Bizarre Jezabel Pkhia
Addac Systems Addac506 Stochastic Function Generator
Pladask Elektrisk Dradd(s)

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

Jamuary 2501 – Music For People Who Hate Dancers

I don’t really hate dancers, even if this patch might make you think I do.

I don’t trend towards rhythm driven music set to a time grid very often. And even when I do aim to have a rhythmic patch, it’s almost always doing something to mess with time. Jamuary 2501 is no exception.

The first patch of this wonderful Jamuary 2025 started as a desire to use an old and new piece of gear. I bought the Bizarre Jezabel Quarté a couple of years ago when I ran into several Bizarre Jezabel modules for sale at a retail shop in Germany. Until then, the only way to purchase one was to go through a labyrinthine process (for an American) of ordering directly.1 But when I first bought Quarté I didn’t get along with it well at all. I couldn’t figure out how to control the LPG, and what I got was a mess. The controls were crammed, and I sold it forthright. But a few months back I got another hankering to try the Quarté. The PT2399 delay chips are legendary for their lo-fi character, and the quad nature of it as a LPG and delay is right up my current alley of interest. I went on Reverb and grabbed the first one at a decent price, only this one was the updated Quarté Mk2, with a new wet/mixed switch, and some very clever normalizing across channels. The Mk2 can be used in several output configurations, including stereo or quad mono. But the crunch of the delay is what this module is all about.

Quarté Mk2 is not hard to use, but it is difficult to maneuver. Small, unmarked trim pots in very bad places make wiggling a chore when cables are patched in, particular the “t” and “lpgi” trim knobs. The introduction of a wet/mixed switch (which is a 50/50 mix) is very nice. The vactrol-based LPGs sound good, but are quite aggressive, and with a fairly short tail. It’s not always the right sort of strike, which is why I opted to use a Natural gate to articulate notes in this patch, with the Quarté as a delay only.

Most of this patch is pretty simple. Two outputs from the Joranalogue Generate 3 were mixed together and sent to a Natural Gate. The sequence is derived from the Joranalogue Step 8. Both the Natural Gate and Step 8 are clocked by Pam’s Pro Workout, from separate outputs clocked at different rates. The kick was made by Ringing CUNSA, and the hats were blue noise from Sapel sent through a HPF (also CUNSA). Both were triggered by a x8 click output, via the CuteLab Missed Opportunities at increasing levels of probability.

But why is this music for people who hate dancers? It’s pretty groovy. It’s a good tempo for the nightclub. But there is a wrench. At some points, there was an envelope that ripped through the sequence, disrupting the timing and jolting the groove. It’s sudden and unapologetic. The sequence always got back on the grid quickly, but not always in the same spot it was before things were rudely interrupted. It’s jolting and not conducive at all for dancing. I’m sure I’d get thrown out of the club were I to play something like this.

Modules Used:
Joranalogue Step 8
Joranalogue Generate 3
Joranalogue Contour 1
Joranalogue Compare 2
Frap Tools 333
Frap Tools Sapel
Frap Tools Falistri
Frap Tools CUNSA
ALM Busy Circuits Pamela’s Pro Workout
CuteLab Missed Opportunities
Addac Systems Addac506 Stochastic Function Generator
Rabid Elephant Natural Gate
Bizarre Jezabel Quarté Mk2
AI Synthesis 018 Stereo Matrix Mixer
Xaoc Devices Samara II
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Payment required direct international wire transfers with no purchase protection, and expensive fees to execute. ↩︎

What Are We Even Doing Here?

As a result of acquiring both the Synthesis Technology E370 and the Flame Instruments 4VOX, after also getting the Humble Audio Quad Operator and RYK Modular Algo earlier in the year, I’ve been stringing together a series of chord-based polyphonic patches using various forms of slow modulation to control the volume of each chord tone. From standard LFOs to chaos, and stochastic functions to ocean wave simulations, I’ve tried at least a dozen of this style of patching over the last several months. Some of these have used static chords that don’t really move anywhere. Different notes of a chord come in and out chaotically (in most cases), but the chord itself doesn’t change. Others are based on the harmonic series, where only one pitch change of the master oscillator affects all of the individual harmonics resulting in chord changes. All of those were composed using chaos or random as a pitch source. But, with one exception, it wasn’t until this patch that I used the NOH-Modular Pianist with real intent and composed a chord progression to move the piece along. To set a mood and provide some tension and relief with harmonic motion in addition to volume and timbre changes. And this time I went big with using all eight CV outputs, rather than just four.

The NOH-Modular Pianist is an interesting module. It promises a world of harmonic movement in an environment where using chords isn’t a simple proposition. Polyphony in Eurorack is equipment and labor intensive. Each separate note of a chord requires its own separate oscillator, function generator, and VCA, at minimum. and requires its own discrete signal path. That’s a lot of patching for what is an easy task in a DAW or by using keyboard-based synths. It’s a lot of tuning (and re-tuning); lots of signals to tweak, and lots of modulation to account for. Before the Pianist, ways to get this sort of advanced polyphony was hard to come by. You could use a MIDI > CV converter, which has its own challenges, or else by painstakingly programming a pitch sequencer note by note, which requires a level of music theory knowledge that most don’t possess.1 MIDI > CV converters require careful calibration, and there are few sequencers with more than just four channels. But the Pianist is different.

Rather than programming chords note by note, Pianist uses standard western music shorthand for identifying chords, and the module does the rest. When you program it to play a CM7 chord, for instance, it knows to send out pitch data for C E G and Bb. It’ll even repeat chord notes in a different octave if no color tones are used. You can add two chord extensions beyond the 7th, called Colours in the Pianist, or use chord inversions to designate the third or fifth as the bass note in the chord. If a up to six note chord can be played on a piano, it can be played by the Pianist.

Users can freely enter chords from scratch in Free mode, or, to make the job even easier, set it to Scale mode and choose only from chords within your chosen key. The scale can be set to Major, Minor, or any of the modes2 and Pianist does the rest. So, for example, if a user in Scale mode were choose A Major as the scale, Pianist would present you with only AMaj, Bmin, C#min, DMaj, EMaj, F#min, G#dim, the diatonic chords in A Major, in order to facilitate easier chord progressions for theory novices. As long as your oscillators are tuned, your chords will be in key. Nifty. For those who want to use chords outside of a key, or if your composition isn’t really in a specific key, Free mode allows for creating chords from scratch. Virtually any chord is possible (up to six notes). In both modes, harmonic complexity is simple, with up to two color tones available, and made even simpler in Random Gate mode where each gate received will add random colors automatically, and choose colors that make harmonic sense within that chord. The workflow in creating chord progressions is intuitive. I was quickly making fairly complex progressions with repeats and skipped chords with ease.

Though Pianist is a boon to those of us seeking access to polyphonic 12TET harmonic movement in our Eurorack patches, it does have its weaknesses. Though you can move notes up and down in octaves to create chord depth, it’s done in a haphazard way. Rather than setting each note for the exact voicing you’re looking for, you have to rely on functions Pianist calls Shift and Spread in order to get full, rich chords that don’t clutter a particular part of the audio spectrum, but it’s not exactly clear how that affects the chord as a whole. I can hear changes, but can’t always identify them. Easy variety, however, can be achieved when the Gate mode is set to Spread. No chord will be voiced exactly the same which creates intrigue.

The calibration for the module, at least in Version 1.0, is straight funky. This patch uses eight discrete oscillators. While tuning I sent a C from Pianist to set a baseline. But in order for the oscillators to play the C being sent, they each had to be tuned to G, which I found odd. The newest firmware, 1.2, addresses tuning and scales in a way that version 1.0 does not, which is a great improvement by all accounts, even if I haven’t used it yet to note any changes. Since I’m using Pianist in Free mode in this patch, however, there wasn’t a compelling reason for me to upgrade, though I certainly will now that I’ve finished recording it, even if I have an aversion to the upgrade processes of most digital modules.

The screen has a lot of information, and not a lot of room. However, navigation is still reasonably simple and the information on the screen laid out such that it’s not hard to read. It’s easier to read and use than many far more established modules like the Disting Ex, Kermit Mk3, or uO_C, even if there isn’t a lot of screen real estate. The interface is super easy to navigate using the mini joystick/push button. Version 1.2 is reported to have an even more streamlined navigation and menu system. Though altering global settings like the Scale, Gate or Spread behavior requires some menu diving which is never fun, programming chords decidedly does not. It’s a point and click operation made easy with the joystick, all done on one level. Move the cursor to what you want to change, click, move the joystick to the desired value, and click. Done.

A major issue with version 1.0, which may have been changed, is that it always boots up with the first saved sequence. Unless you save your progression to one of the user slots, you will lose your work if the module power cycles. If you don’t have much in your progression, or it’s a super simple that’s no problem. But if it’s long or has a lot of direction you might be losing a lot. Ask me how I know. 😕

Pianist has its own clock that will change on each beat, along with a clock output to trigger envelopes or some other event as chords change. But it also has a clock input, which will move along the chord sequence with every rising edge like any standard step sequencer. Being that I rarely use a steady clock, I haven’t tried the internal clock, and have instead used clocks created by chaos or some other irregular source. This patch used a fairly complicated sub-patch in order to derive the chord changes. I didn’t want haphazard pitch changes in the midst of notes actively being played, but only when nothing was being heard. Finding an approach for this was time consuming, and although there are probably (certainly?) other methods that would work as well, I settled upon an approach using two comparators, one analog and one digital.

The four waves from Swell Physics first went to the Xaoc Devices Samara II. Samara compares all four inputs, and outputs the Maximum signal (AKA Analog OR). Being that these four waves were controlling the volume of the individual chord tones, it occurred to me that once the Maximum signal went below 0v meant that all four parent signals were below 0v, which meant no volume at all from the chord voice. This is exactly when I want to trigger the next chord in the sequence. I then sent that Maximum signal from Samara II to a digital comparator, the Joranalogue Compare 2, with its compare window set to anything below 0v. So once that Maximum signal went below 0v, it would spit out a gate that would trigger a chord change in Pianist.

The eight chord tones created by the Pianist went to eight different oscillators. The root, third, fifth, and seventh (or fifth if there is no seventh) form the base of the chord and all go to one of the four Flame Instruments 4VOX oscillators, while the color notes and two additional root notes, one that follows chord inversions and one that does not, all go to a self-frequency modulated Frap Tools CUNSA, where each filter is set to self oscillate, and pinged in a Natural Gate.

The Flame 4VOX has been around a long time. My brother, a house sound engineer, producer, and DJ who’s been into Eurorack a long time, lusted for one long before I even knew what Eurorack was. It’s a fully polyphonic, wavetable oscillator beast, split into four sections of up to four oscillators each. Each oscillator can create detuned swarms, chords, or be unison. Each oscillator can be controlled by v/oct CV or midi, and is fully polyphonic with its own output. It really was a very advanced piece of gear for its time. It still is, even if it hasn’t been updated in several years and is showing its age. There are two pots and two CV inputs per oscillator that can control several parameters including scanning the wavetable, detuning, amplification, and more. It has internal VCAs to control volume, but I did not like how they functioned at all, and opted to use external VCAs, which worked to my benefit allowing me to modulate two wavetable parameters rather than the volume and only one parameter. There are also separate FM and reset/sync inputs per oscillator, along with its individual output. Even if CV-able options seem to be limited, virtually every facet of the 4VOX can be addressed via midi, although I haven’t used it with midi at all. It’s a very powerful oscillator bank that can cover lots of ground.

Although I wouldn’t say programming the 4VOX is difficult, it’s not as easy as most more modern interfaces. The screen is bare bones with low resolution and a slim viewing radius. The encoder is a little weird. You have to push it down and turn CCW to move downward in menus, while you simply turn it CW to change parameter values inside the menu. As a unit, it’s impressive. There are lots of options, plenty of stock wavetables to choose from, and it sounds good, but it shows its age. Upgrading firmware is a laborious process with modern computers. Although you can install your own wavetables, the processes to convert them to the right format and get them loaded can be a nightmare, particularly if you’re a Mac user. All of the computer-side software is a decade or more old, and workarounds are sometimes needed. I’m not a “I need to load my own wavetables” kind of guy, and my unit came to me with the latest update, but if I were that guy or my unit hadn’t already had the latest firmware, it would not be an easy task. I’ve had similar problems with older gear before3, and they’re no fun.

The 4VOX forms the base of the chords, brought in and out by the four waves from the Addac508 Swell Physics. The sound is both powerful and delicate, with each quadrant set to four slightly detuned, unison oscillators, each one being slightly modulated by the Nonlinearcircuits Frisson. Although I was pleased with the 4VOX’s performance, the Synthesis Technology E370 is a better overall option. Although the E370 is also based on nearly decade-old technology, it’s still a better user experience. The screen is in color, fully customizable, bigger, and gives more information. The stock wavetables are a gold standard. The software UI is easier to navigate using a more standard encoder. The physical UI is also far better arranged. With the 4VOX, the screen is in the middle of the module, knob locations are not symmetrical, and are more difficult to wiggle once everything is patched up. The E370 has everything laid out very neatly. The screen is on the far left, I/O on the far right, with knobs in the middle, leaving more than enough room to wiggle. It’s really a premium user experience. The only advantages the 4VOX has are its price, size, and complete polyphonic midi capabilities. The 4VOX has always been less expensive than the E370, and that remains true on the secondary market. However, the price differential on the used market is much closer than their respective MSRPs, as the E370 can be purchased for well under 50% of the original retail cost. The price difference on my units, both purchased used within a week of one another, was $100. The size, however, cannot change, and in that regard the 4VOX has the E370 soundly beat. At 29hp the 4VOX is still large (and odd hp 😕), but it’s dwarfed by the massive 54hp E370. It’s the massive size, however, that makes the E370 such a pleasure to wiggle.

Once mixed to mono in the Atomosynth Transmon, the 4VOX chords went through the venerable Industrial Music Electronics Malgorithm MkII, a powerhouse FSU-type module with bit crushing, sample reduction, and various types of waveshaping available to have anything from subtly crunchy through completely mangled audio at the output. Using Malgorithm was an absolute treat. Most of the lo-fi effects I tend towards are of the vintage variety, tape sounds, record pops, etc, vs just slightly old sounding digital artifacting, so it was a different sort of experience. On any other day I likely would have chosen distortion in this role, but the day I started this patch I precipitously chose to go with a different kind of dirt. And it was perfect. I was still able to get some nasty distortion via the “Axis” waveshaper (whatever that does), with the bit crushing and sample reduction playing a slowly increasing role. It’s starts clean, then moves to understated digital artifacting, and finally waves of full blown destruction, ending clean once again. One aspect of Malgorithm I enjoyed was the interaction between input level and the waveshaping. It responds similarly to tube distortion circuits, where the harder you drive the input, the more distortion there will be ranging from just barely there to outright obliteration. Each of these waveshaping circuits has three different levels, red, orange, and green, and all of them have their own character. These waveshapers can even interact with each other for nuking your audio from orbit if that’s what you want. I rode faders on the very awesome Michigan Synth Works XVI to control both the input level as well as the wet/dry mix in order to provide a performative aspect to this patch. Both the bit crushing and Nyquist parameters were modulated by the Addac506 Stochastic Function Generator, with a fairly wide range of both rise and fall times between medium and long. Each of the parameters were set to moderate crunchiness with the knobs, with their modulation moving towards a full-resolution signal. This created an absolutely amazing effect from the sound of dying batteries to the fabric of the universe being unzipped and sewn back together. I would highly recommend Malgorithm to anyone, but you’d have to find one first.

Once through Malgorithm and into the stereo matrix mixer, these now buzzy chords went to the Holocene Electronics Non-Linear Memory Machine, with a very light perfect fifth shimmer in the feedback loop. I initially went with a full octave shimmer, but decided against it as it was too prominent and spiraled too far out of control too quickly. This created a very subtle sheen on the chords that isn’t noticeable much of the time, but is a nice effect nonetheless. Feedback and Spread were both modulated by attenuated versions of the Average output from Swell Physics.4

The color tones of each chord were all sent to the mighty Frap Tools CUNSA, a quad filter extraordinaire, and pinged in a pair of Rabid Elephant Natural Gates. Though I was tempted to use the simple sine waves from each LPF output, I later decided to use the HPF output as a means of each oscillator frequency modulating itself in order to add some harmonics, which worked a treat. In retrospect, I could have simplified the patch significantly had I pinged CUNSA itself instead of running the output to Natural Gate, but I chose the Natural Gate route because Natural Gate.

Using a patch technique I’ve used often, the gates that pinged the Natural Gates were created by running the four waves from Swell Physics into the Nonlinearcircuits Numberwang. But rather than simply choosing four gate outputs, I ran several Stackcables so that each strike input on the Natural Gates were each derived from three Numberwang outputs. This filled in space much better. The notes are still sparse, but they’re triggered at a much better pace using three gates each rather than just one. These notes fill out chords in interesting ways. They’re very short, but combined with delay and reverb, those colors hang around long enough to create intrigue in the overall sound without being intrusive.

These notes were sent to what is becoming one of my favorite delays, the Chase Bliss Audio Reverse Mode C, a re-imagining of one of the modes on the legendary Empress Effects Superdelay. Although it certainly does standard stereo delay stuff, it excels at being a quirky sort of delay, able to output normal delays, reverse delays, and octave up reverse delays, by themselves, or in a mix. Mixing delays creates a beautiful sound space of echoes bouncing all around the stereo field, at different speeds and octaves, which is an incredible aural treat. I haven’t yet learned to properly modulate the Reverse Mode C, but that’s a function of not having a firm grasp on midi. As I figure that out, things ought to get very interesting, with different sorts of delays fading in and out in very creative ways.

The last synthesized voice in this patch is the Good and Evil Dradds as an effects send, sending both the chords and ornamental color notes for some granular action. The Dradd(s) outputs went to separate EF-X2 tape echoes with different settings. Ever since getting a second Dradd, I’ve been infatuated by what I can do with them, and this patch may be the best result yet. Both were set to Tape mode with similar P2, but different P1 knob positions, with the P1 parameter on both being modulated by an attenuated version of the Average output on Swell Physics. The Dradds, in some ways, steal the show. They create all sorts of movement in the stereo field and fill the space between chords and color notes in ways that keep the piece from becoming still. They’re the wake left after a large swell passes by. The bio-luminescence after a crashing wave.

The spoken voice is a set of three samples that were triggered in Koala on the iPad. Triggers emanated from the gate outputs on Swell Physics combined in the new Nonlinearcircuits Gator, sent to the Joranalogue Step 8 and then the Befaco CV Thing and converted to midi notes that were sent to trigger Koala samples on the iPad. It took me a while to figure this one out, though it worked exactly how I envisioned. Gates from Swell Physics were combined in Gator, which triggered Step 8. Each of the first three steps sent its individual gate output to a different CV Thing input. This ensured that the three samples were always triggered in the correct order. The samples themselves were then sent to a new collaborative delay plugin, Moon Echo, by AudioThing and Hainbach.. Moon Echo is a modeled simulation of bouncing sound off the moon, and has a very distinct character. The delay was set to fully wet, and has a delay of about 2.5sec, though that changes depending on the day. The moon is not at a fixed distance from the earth, and the plugin reflects that. By “pinging” the moon upon startup, you will get the current distance to the moon, and a new delay time down to five decimal points (1/100,000 of a second). Fucking cool.

One thing I did differently with this patch paid off high dividends, and will absolutely become a staple in my recordings. I’ve been patching for a few years, but am still an absolute novice at standard studio stuff. Mixing, EQ, compression, and everything else in that sphere evades me. I’ve used some very basic EQ in the past, but really only on the final output, which, as I’ve discovered has several drawbacks. This patch was the first I’ve ever recorded using EQ, the highly regarded Toneboosters TB Equalizer 4, on individual channels as they were being recorded. The chords, ornamentals, and reverb send received EQ that greatly improved the sound quality, even if it could still be better. I did, however, neglect to put EQ on the Dradds, which proved to be a mistake, as there is a very occasional pitch that pierces through in what can’t be far from dog whistle frequencies. It’s not eardrum busting, but I can hear it, and it annoys me. I didn’t catch that behavior when recording, and never EQ’d it out. That said, it was also the first time I’ve recorded a modular patch in separate multi-tracks, including the chords, ornamentals, Dradds, spoken voice, reverb return, and the mixed stereo signal (presented here). I can go back and make changes or additions should that be something I want to do, or send the parts to someone else for mixing and mastering should I ever choose to release it.

Overall I’m very pleased with this patch. It was originally composed in a different key and completely different chord progression, and for a special group of online friends. The chord progression I used in this recording wasn’t composed, as such. At least not by me. I asked ChatGPT for a “sad progression, yet with a sense of hope.”5 I asked for it to be more sad, and it changed key from Amin to Dmin, and ended in a non-diatonic chord (DMaj), which I found a wonderful “choice.” Then, as a means to test the Pianist, I asked for several chord extensions and inversions, and ChatGPT complied, giving us what we have in the recording.

Modules Used:
Addac Systems Addac508 Swell Physics
Addac Systems Addac506 Stochastic Function Generator
Flame Instruments 4VOX
Frap Tools CUNSA
Frap Tools Falistri
AI Synthesis 018 Stereo Matrix Mixer
Atomosynth Transmon
Industrial Music Electronics Malgorithm Mk2
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Nonlinearcircuits Numberwang
Nonlinearcircuits Frisson
Nonlinearcircuits De-Escalate
Nonlinearcircuits Gator
CuteLab Missed Opportunities
Rabid Elephant Natural Gate
Joranalogue Compare 2
Joranalogue Step 8
NOH-Modular Pianist
Befaco CV Thing
Intellijel Amps
Xaoc Devices Samara II
ST Modular Sum Mix & Pan

Outboard Gear Used:
Echofix EF-X2
Chase Bliss Audio Reverse Mode C
Walrus Audio Slöer
Michigan Synth Works XVI

Plugins Used:
AudioThing x Hainbach Moon Echo
elf audio Koala Sampler
Toneboosters TB Equalizer

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

  1. I studied music performance in college, and have a decent grasp on music theory. The last 30 years, however, have pared that knowledge down to basics. I’m certainly no expert, but I can read chord charts and identify chord notes, even if I have to think for a second. ↩︎
  2. Dorian, Phrygian, Lydian, etc ↩︎
  3. The Humble Audio Quad Operator I purchased did not have the latest firmware update, and the internal VCAs all bled badly. I was unable to install the latest firmware with a modern Mac. I was fortunate to have an older one available to me that I was able to use. ↩︎
  4. There are no fewer than seven modulation points in the patch that are all modulated by an attenuated version of the Average output from Swell Physics. ↩︎
  5. This was literally the first time I’ve ever considered purposefully using AI for anything. ↩︎

A Xaoc Devices Exploration

It had been a while since I used my Xaoc Devices case for anything beyond reaching for a couple modulators like Zadar and Batumi II. I’ve always loved the Odessa, even with its faults, and I had an itch to use it.

I’m not going to detail this patch too much.

A square wave from Batumi II acts as a clock for Erfurt’s forward counting. A second square wave output hits Erfurt’s reverse counting input. Four gate outputs from Erfurt (Gates 1-4) are patched to Samara II, with each gate being attenuated to a particular note.
As these gates go high, they sent pitch to the five v/oct inputs on Hel, Odessa’s expander, creating a mix of full and arpeggiated chords (no idea what Odessa is tuned to). The Fundamental, Even, and Odd outputs are mixed down to stereo, and sent to Zagzreb. Zagzreb’s Bandpass L/R outputs go to the mixer, while the L High Pass output is patched to Sarajewo for some analog delay, with Taps one and three output to the mixer.

In a mood to try something new, I ran the dry signal to the the Optotronics Stereo Lockhart Wavefolder. I wish I had sent that signal to the delay as well. It’s a pretty cool module, though I’m not really sure what everything but the fold knobs are doing. Looks like it’s time to dg into that one.

All three signals, Odessa/Zagzreb, Sarajewo, and the Wavefolder go to the Vongon Ultrasheer for some reverb.

Uncharacteristically, I also did a smidge of post processing, running the recording through some compression and EQ. I’m new to using both, but I am very happy with the sonic results.

Modules Used:
Xaoc Devices Batumi II and Poti II
Xaoc Devices Lipsk
Xaoc Devices Erfurt
Xaoc Devices Samara II
Xaoc Devices Odessa
Xaoc Devices Zagzreb
Xaoc Devices Sarajewo
Xaoc Devices Zadar
Xaoc Devices Tallin
Xaoc Devices Warna II
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Optotronics Stereo Lockhart Wavefolder
Knob Farm Ferry

Outboard Gear Used:
Vongon Ultrasheer

Plugins Used:
ToneBoosters TB Equalizer
Audio Damage Rough Rider

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

0:00
0:00