Jamuary 2509

Today I decided to go back to a technique I’ve rarely used, and on a much grander scale. I don’t use noise very often, and when I do it tends to be for the obvious use cases. Hit hats, wind and ocean sounds, sprays, etc. I seldomly use it for modulation, and only once have I used noise of any flavor to amplitude modulate an oscillators wave. Today I would do it again, times eight.

I conceived of using noise to modulate all eight harmonics of the Verbos Harmonic Oscillator this morning as my wife was talking to me. I even popped up a bit at the idea, and she took notice.

Wife: “What?”

Me: “Nothing. Just had a thought occur to me. Not even sure if it’s worth a shit.”

I spent the better part of the morning and early afternoon thinking about how I wanted to do this patch. I knew that just noise into each harmonic’s VCA wasn’t it. Then it occurred to me: Chaos! As soon as this though hit my brain I knew what to do, and immediately went to the synth to start patching.

I ran blue noise from Sapel to input 1 of the Intellijel Amps. Amps is a special sort of VCA. Everything cascades. All inputs cascade, as do CV inputs, and there are mixing outputs as well. It’s incredibly flexible. I have four of them chained together to be an eight channel “super VCA/submixer” and it’s been a great choice. Since each input cascades, I only needed one noise input to run this entire section of the patch. Every other channel received that same blue noise input as well. Into each channel’s CV input I patched one of the eight outputs from Nonlinearcircuits The Hypster to chaotically modulate the noise levels of all eight channels independently. Once that was patched, I ran each Amps output to its own Harmonic Oscillator VCA input at random. The only part of this patch that was planned were the first and fifth harmonics, which received their noise modulation from the U and -U outputs on The Hypster as they’re the outputs with the highest amplitude. Each harmonic was slowly brought in by slowly adjusting each CV attenuator individually at random until they were all playing. The nature of chaos means that cycles, even if semi-regular at times, don’t repeat exactly the same, and the harmonics never played the same twice, which kept movement interesting. There were often pauses or redirections in motion for each harmonic. Wonderful.

The mixed HO output was patched to the Multi-Delay Processor. I’ve been taken in by the earthy sound of the Harmonic Oscillator. Each harmonic sine wave has a little hair on it once you give them a little push. The drive in the MultixDelay Processor, both on the input and on each tap output, accentuates that hair in all the right ways. This Verbos ecosystem is warm and inviting, but it can also roar. Taps four and eight were patched to the Verbos Scan & Pan, hard panned left and right, and the output of the MDP, which only had the dry signal, was patched to be in the middle of the mix. This mix created a strong signal with some subtle stereo movement which ended up being fantastic. This stereo signal was then patched to the stereo matrix mixer to be spread around to different effects.

The Rossum Panharmonium fed the Holocene Electronics Non-Linear Memory Machine, which was set with a fairly slow delay and full clockwise smearing, which really smoothed out the Panharmonium’s output for an accompanying drone that floats along beside the ever moving Harmonic Oscillator. This output then fed the Dradd(s), which did its thing in Grain Mode (although I think I forgot to turn on the modulation to both P1 and P2 on both Dradds 😬 – I’m also not convinced it isn’t lost in the mix).

I’m very pleased with how this patch turned out and was a great success at using this technique which I’ll be sure to use more often.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Triple Sloths
Intellijel Amps
Frap Tools Sapel
Verbos Harmonic Oscillator
Verbos Multi-Delay Processor
Verbos Scan & Pan
AI Synthesis 018 Stereo Matrix Mixer
Rossum Electro-Music Panharmonium
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Toneboosters TB Equalizer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

Jamuary 2508

I was short on time yesterday, so put together a reasonably simple patch on the iPad. This Jamuary I’m purposefully trying to use unfamiliar techniques with unfamiliar instruments, and that’s what yesterday was all about in the little time I had. But the patch turned out so beautifully that I wanted to take some time to explore its possibilities in the modular. My first thought was to try and use the Oxi One as a Midi > CV converter so that I might patch the outputs of the Alexandernaut Fugue Machine to something like the Synthesis Technology E370 or some other quad sound source. But despite spending the better part of three hours trying to figure it out,1 I still had achieved no progress and so abandoned the idea and decided to do the next best thing. To patch a more intentional version of Jamuary 2507 into the modular and run it through several effects and see if I couldn’t come up with something new.

The initial patch is the same. Fugue Machine feeds the Klevgrand Speldosa and Decidedly Decent Sampler software instruments in AUM. Yesterday those went to reverb and I called it a day. The patch was beautiful and full of promise. Today went much further. The outputs of both Speldosa and the Cello samples were sent from AUM, via the ES-9 outputs, to the AI Synthesis 018 Stereo Matrix Mixer so that they might be spread around the system to three different effects, shifted and morphed matrix style, and finally sent back to AUM before getting some reverb. Though I’m trying new techniques with new things, that doesn’t mean everything in a single patch, lest I become overwhelmed and frustrated.2 The effects I chose were the Venus Instruments Veno-Echo,3 Pladask Elektrisk Dradd brothers, and the Rossum Electro-Music Panharmonium. Speldosa and the cello samples were sent to the delay, with Speldosa only going to Panharmonium, while the cello only was initially sent to the Dradd(s), before adding the delay to the Dradd(s)’ input, slowly adding more, and allowing those higher pitched notes to be granular-ized and spread through the stereo field. The Dradd(s) really turned out to be the highlight, though the delay isn’t far behind. Panharmonium sounds nice, as it always does, but seemed to get lost when it wasn’t leveled as a prominent voice in the mix at a given moment.

Modules Used:
AI Synthesis 018 Stereo Matrix Mixer
Venus Instruments Veno-Echo
Pladask Elektrisk Dradd(s)
Rossum Electro-Music Panharmonium
Nonlinearcircuits Triple Sloth
CuteLab Missed Opportunities
Calsynth Twiigs
Frap Tools 333
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Plugins Used:
Alexandernaut Fugue Machine
Klevgrand Speldosa
Decidedly Decent Sampler
Toneboosters TB Equalizer
CoVariant

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. To be fair, I struggle with just about everything with the Oxi One. I really need to revisit it with purpose. ↩︎
  2. I recently suffered that sort of frustration when I put two completely unfamiliar modules in my Xmas 2024 Synth. It was an exercise in frustration when it should have been a relaxing time. ↩︎
  3. I used CoVariant, a now seemingly discontinued midi > cv plugin for the iPad to send out an analog clock from the iPad that is perfectly in sync with the midi clock generated by AUM. I will never delete this plugin as long as it continues to work. It also does midi > CV conversion (but I couldn’t figure it out). ↩︎

Jamuary 2506

I like wavetables and I like drones. Jamuary 6 saw both. A modulated quad wavetable LFO modulating the levels of a quad wavetable oscillator. It’s a patch I’ve been wanting to try for a while, and Jamuary is the perfect time to experiment with new techniques.

There are a lot of moving parts in this patch. The base creating the ever-changing drone is four unsynced LFOs from Kermit Mk3 controlling the levels of the four outputs from the E370 in the Intellijel Amps. These four outputs were patched to the ST Modular Sum Mix & Pan and then to the mixer. The pan CV inputs of the latter three channels were modulated by the Addac506 Stochastic Function Generator. The stereo signal from Sum Mix & Pan went to both the output as well as to a second mixer for summing to mono before being routed to the Verbos Multi-Delay Processor. The mono output of the MDP, which only has the dry signal,1 went to the output mixer, while two of the taps were routed to the Verbos Scan & Pan for hard panning left and right. All three of these signals were mixed and sent to the output.

Although I like the drive the MDP created, it largely defeated the panning of the three E370 outputs. I’d have been better served to run the stereo signal from the Sum Mix & Pan to a stereo distortion for some added drive so as not to throw a cover over subtle movement in the stereo space, but I do like the overall result. The MDP is a fantastic source for overdrive, and is a different sort than a full blown distortion like Mimosa. It’s deep and warm, like a fuzzy blanket on a cold winter day.

There’s lots of modulation too, with the bulk of it being supplied by the Nonlinearcircuits The Hypster fed a Let’s Splosh, with its outputs modulating the waves in both the E370, and three of the four channels of Kermit. Let’s Splosh self-modulated both Gain and Damping to keep its outputs in constant flux.

To accompany the drone proper, I sent the panning wavetables from the Sum Mix & Pan and stereo delay taps from the MDP to a pair of unmodulated Dradds. Both are in Grain Mode, and both are time stretching, with the left channel in reverse at about 20% speed and the and the right channel in forward at a slow crawl. It’s a bit difficult to pick out in the mix, but the overall sound is very different without it, and the final result benefits greatly with it.

The final touch to the patch are the drips and crickets. This oscillator and envelope are both from Falistri, sent through the Holocene Non-Linear Memory Machine. Pitch and random triggering was provided by Sapel. The last free channel of the Addac506 controlled both the Freeze and Scanning of the buffer. Its EOF trigger turned Freeze on and off, with the EOR gate output gating the function output in a VCA, which was scanning the buffer. This little sub-patch took a little while to figure out, but the results are rewarding. I’d been wanting to mess with scanning the buffer of the NLMM ever since I heard this patch by Ras Thavas, and today seemed like the day. It was a fun patch that I’ll be sure to explore further in the future.

Modules Used:
Industrial Music Electronics Kermit Mk3
Synthesis Technology E370
Nonlinearcircuits The Hypster
Nonlinearcircuits Let’s Splosh
Verbos Multi-Delay Processor
Verbos Scan and Pan
Addac Systems Addac506 Stochastic Function Generator
ST Modular Sum Mix & Pan
Frap Tools Falistri
Frap Tools Sapel
Holocene Electronics Non-Linear Memory Machine
Pladask Elektrisk Dradd(s)
Intellijel Amps
AI Synthesis 018 Stereo Matrix Mixer
Knob Farm Ferry

Outboard Gear Used:
Walrus Audio Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Delays have long been used as preamps without the delay, and the MDP will be no exception. ↩︎

A Saunter Through Chaos

I recently sat down with a goal: identify modules in my synth that are underutilized, and make a plan to integrate them into my patches. Like all musicians, synthesists can fall into patterns. We use the same techniques and too often travel similar routes. Though my repetition of techniques of late is somewhat purposeful as I learn new gear, its’s still repetition, and it’s nice to walk on untrodden ground every once in a while.

While I was looking through my folder of manuals, I quickly identified a module that I’ve only used once, and over a year ago: the Blukač Instruments Endless Processor.1 On paper this sort of module seems a natural partner for the kinds of sounds I use most, but for some reason I’ve tended to reach by it and patch something else like the Rossum Electro-Music Panharmonium or Qu-Bit Electronix Aurora. In a bid for some nonlinearity in my practice, I decided that the Endless Processor would be the first of those unused modules to put through its paces.

This patch uses chaos to create a sequence. The starting point is The Hypster by Nonlinearcircuits. I use The Hypster in a lot of patches for a lot of different purposes. I use it for “normal” modulation, the beginning of a chain to make clocks, pitch CV, and maybe more. It’s definitely one of my favorite modules overall, and a top two or three modulator that I’ve used. The Hypster serves many purposes; sometimes more than one in a given patch. In this patch it would serve all three of those functions, plus a bit of self-modulation to keep it from settling into something resembling a pattern.

Four outputs from The Hypster (X, Z, -Y, -U) were patched to another Nonlinearcircuits module, Numberwang, for some good old fashioned gate extraction. The last time I used Numberwang, I wanted a steady-ish rhythm. Not perfectly-on-the-grid steady, but something close, even if it had the propensity to drift (which was a big part of the point), which is why I didn’t modulate The Hypster in that patch. But this time I didn’t want steady. I wanted gates that can’t easily be tied time, which required a meandering source. Chaos can meander a bit, but it can also become regular in that chaotic kind of way. I didn’t want the regular part this time, so modulation of at least one parameter was crucial. Once I started to ping my oscillators with gates from Numberwang and found a frequency on The Hypster that provided a satisfying cadence, I set out to modulate both the Damp and Gain settings. Adding gain adds both voltage and nonlinearity to the feedback loop. More gain is higher output levels and more meandering. Damping suppresses those things in interesting ways. Modulating both brought revealed the chaotic nature of the signal, specifically through the pitch CV, but also in the gate pattern from Numberwang.

This wasn’t the first time I’ve used a chaos signal an a source for pitch CV or gates. But it was the first time I’ve used chaos as a source for pitch and gates while I performatively modulated it so that I would have more control over its range, or the way it meanders. Too much gain and you have pitches more fit for dogs than humans) Too much damping, and you have pitches without enough variation to keep the note sequence interesting, and gates that quickly turn into patterns (even if they do drift a bit). To modulate gain, I used The Hypster’s next door neighbor in my case, Frisson. I also used the -Z output to self-modulate Damping. Although both the Gain and Damping CV inputs both have attenuators, I patched both signals to an attenuator to fine tune the level of modulation The Hypster was receiving. Even very small turns of either attenuator knob revealed very interesting results that would be difficult to achieve with one-pass attenuation at the CV input. Slightly different gate patterns; slightly different notes in the pitch sequence. All very interesting and necessary in order to keep any part of the sequence from becoming dry or repetitive for too long.

I’ve used chaos as a pitch CV source frequently, but this time was a little different. Normally I use one source signal for each oscillator in the patch. But this time I decided to use just one chaos signal as the source for all four oscillators, clocked by Numberwang separately in four separate channels of Quantermain. I controlled the range of pitch primarily through an attenuator, the Nonlinearcircuits De-Escalate.2 This allowed for small changes in pitch choices. One thing I would likely do differently would be to minimize very low pitches by using some offset to the signal before attenuation, especially as I opened up the attenuator. Higher pitches also means lower pitches at the bottom end without some offset, and some of the pitches on the low end are just a little too low for my liking. I imagine some are even inaudible.

The pitch sequence (in D Minor) was sent from Quantermain to the four wavetable oscillators of the Synthesis Technology E370, with all four oscillators tuned to the same pitch, even if I couldn’t tell you what that pitch is. Each wavetable was lightly modulated by the Frisson, with each oscillator detuned slightly by hand. This constant variation in timbre created a wide variety of sounds. Each note just a little different than the last time it was struck. The oscillator outputs were patched to a pair of Rabid Elephant Natural Gate LPGs for pinging, using the same four Numberwang outputs that selected pitch for each channel.

The result is a dance of orbs in some fantastical forest, or drops of water falling to make music, like something akin to a fast moving Fall on the Monome Norns. It’s a beautiful generative sequence, even if this version of the patch used some human assistance. Using a VCA to control levels of the pitch and modulation signals with a very slow modulator would be the key to make it fully generative. In fact, I’ll put that in my patch book to use in the future!

In this patch I used a very simple stereo algorithm: the first Natural Gate outputs are the left channel, and the second Natural Gate outputs are the left channel. Although this decision created a wide stereo space, four separate events happening independently, two in each ear, can become a little distracting and separated, even if it also heightened interest. I think I might have been better served to send these outputs to a panning mixer for mixdown to place them a little more carefully in the stereo field, though I won’t go so far as to say that change should be recorded in ink. There is no sense of a unified space until these completely independent left and right channels hit the stereo reverb.

This effect was exacerbated by the dual mono delays used in the patch, a pair of Echofix EF-X2 tape echoes. Each was set to augment the original’s clarity, holding on to timbre as long as it could until atrophy took hold. Each delay was also set to a different delay time and tape head playback/feedback configuration which created very different echo patterns, heightening the very different sequence patterns in each ear.

But I made a terrible mistake. Throughout much of the recording you can hear some clipping in the left channel. While I investigated I made sure levels were good going into the audio interface. Not only were they not too hot, I’d have liked for them to be even louder. At first I thought it might be some artifact in the wavetable being modulated. But why only that wavetable? I then thought I might have set an envelope a little hot before going to Natural Gate, but that wasn’t it either. Then I heard it. A clue. The clipping wasn’t on the note generation itself, but only occasionally on the very first repeat of only particular notes. It doesn’t happen all of the time. As I was recording i investigated my gainstaging. I discovered that my levels going into the left channel delay were quite hot, and that’s what was causing the clipping; the inbuilt analog limiter that was occasionally being hit very hard and distorting. At least I think that’s what it was. Toward the end of the recording I adjusted the input level to the left delay which seemed to mostly sort the issue.

I also used The Dradds in this patch, although in a way I had never used them before, with the Grain algorithm. I had sort-of tried this mode before, but never really investigated it with the manual until this patch. Like when I actually RTFM while using The Dradds in the Tape algorithm, I was immensely happy with the result. Understanding your instrument is key. As synthesists we can happy accident our way into nice sounds regularly. But you can’t really compose with the hope that your knob twists will land you where you want to go. Just as strumming away on a guitar, or pressing piano keys doesn’t create something musical, you can’t really get music from a modular until you know which knobs to turn and when/how much to turn them. For this patch I chose to scan each buffer using a chaos signal from Frisson. This was nice movement, but the scarcity of notes feeding The Dradds meant that sometimes there was nothing in the short buffer to scan, or so little that it wasn’t scanned while it was in the buffer. This served to keep the Dradds from becoming too busy and overtaking the patch, but I would have liked more from The Dradds at many points.

The last effect used (besides reverb on the entire output) is the aforementioned Endless Processor. I hadn’t used this module much before. Not because I don’t think it would add a beautiful dimension to my patching, but because of unknown reasons that had me patching other FFT-like modules instead. The Endless Processor is a very simple module that does just one thing: it analyzes the frequency and level information of incoming audio, and endlessly sustains an average of that audio until you clear the layer. You can clear layers, or replace them with new audio, but ultimately the Endless Processor is a very simple instrument. It’s perfect for drones or making chords. It’s perfect for creating air in your patch, or filling space and creating texture. You can even use this module for stabbing techno chords.

But simple doesn’t mean easy. Capturing the exact sound you want, particularly at lower Memory times, can be challenging. You don’t always get the capture you hoped for (something that happened during this recording), and sometimes you get a capture that sounds downright bad. Today was my first day with it, so I think I can forgive myself for getting “meh” results in my first recording with it. I can only discern one capture, though I was pretty sure I did at least four of them on layers one and two. My initial goal was to have both channels of the Endless Processor float back and forth in the stereo field at different rates, but with only one sound being audible it’s pretty awkward, especially with as loud as it is. Clearly, I need practice.

Overall I really enjoyed creating this patch. Chaos is always fun to use in whatever capacity I use it. The Natural Gates shines again. The Echofix tape delays, brilliant. The Dradds doing Dradd-y things. My hope is to really work with the Endless Processor, as I can absolutely see just what a boon it could be in my practice.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Frisson
Nonlinearcircuits Numberwang
Nonlinearcircuits De-Escalate
Synthesis Technology E370
uO_C (Quantermain)
Pladask Elektrisk Dradd(s)
Blukač Instruments Endless Processor
Rabid Elephant Natural Gate(s)
Calsynth Changes (MI Stages)
AI Synthesis 018 Stereo Matrix Mixer
ST Modular Sum Mix & Pan
Intellijel Amps
Knob Farm Ferry

Outboard Gear Used:
Echofix EF-X2
Walrus Slöer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. I actually identified a whole lot of modules that have been underused, and am making a plan to use them, or sell them. ↩︎
  2. As much as I like the De-Escalate, it would be a much easier tool to use were the jacks to one side and the knob on the other. Input-Knob-Output is a horribly patching orientation for minimizing spaghetti. ↩︎

Drifting Numbers

Most of the time in modular synthesis drift is bad. Musicians all over will do whatever is necessary to mitigate drifting clocks or rhythms. Module makers of all sorts include resets specifically for the purpose of realigning the outputs to an incoming clock with the explicit goal of avoiding drift. Maintaining time is crucial in any beat driven track. Except when it’s not. And it’s this rhythmic drift that I wanted to explore in this otherwise beat driven patch.

It’s no secret that I like chaos. I use it for modulation or as a clock in most patches. I generally don’t expect or even desire steady clocks when I use chaos, but I also don’t generally produce beat driven compositions, and when I have I’ve tended towards uniform clocks and on-beat rhythms like most people. But today I wanted to explore a beat driven patch that uses chaos as its driving force. Rather than fear the drift, I endeavored to lean into the inherent wandering of chaotic signals while using them as lead in creating the rhythms. What I got is a wonderful dance of rhythms that want to be in line, but just can’t quite maintain their focus to make it last the whole way through. A set of rhythms that are mostly on the grid, but that occasionally drift before finally meandering their way back to the beat, like an ADHD dad in a grocery store. What we hear is the beauty of chaos in real time.

A few months ago I emailed Andrew at Nonlinearcircuits to ask for a module recommendation. I had lots of CV producers, but outside of sequencers, a clock divider, and EOR/EOC gates on function generators, I didn’t have many modules that can produce a plethora of gates. Although he had a couple of module recommendations, none came more highly suggested than Numberwang. “It’s like Let’s Splosh, but for gates” were his exact words, and I was sold. Whether using regularly timed signals like LFOs or cycling envelopes, or irregular signals like chaos or random, I’d have a gate creation machine that would be directly related to the signals feeding it.

Although I wasn’t sure how this experiment in chaos-driven rhythms would turn out, I knew I could get at least one of the waves to be in time. NLC’s The Hypster has 3 controls (frequency, gain, and damping). As explained in the Build Guide, “Damping keeps the circuits in the range of useful, somewhat regular modulation signals. As we’ll see later, more damping leads to more regular sine-like oscillations.” The guide goes on to show that although the signals are not exactly what we’d call uniform, if we use a good mixture of both both gain and damping, at least one of them will be regular(ish). Regular enough to drive a beat from. What I heard while using Natural Gate to tune the regularity of the incoming gate, saw via Numberwang’s copious blinkenlights, and with my metronome confirmed it.

With Natural Gate pinging away on my down beat, it was time to find those drifting rhythms I was after, hoping that the chaos feeding Numberwang wasn’t too far dampened and too regular. But things proverbially fell in line all too quickly. After trying several outputs on Numberwang in order to get the perfect four beat sequence, I found it. Beat one of the gate sequence is always on time, at the blazing tempo of 53bpm. This is also the beat that controls the kick and hats (using Pam’s as a 2x clock multiplier). Gates two, three, and four drift slightly. And not in that weird, timely way that slightly out of sync clocks drift and realign,1 but in a more organic way that both speeds up and slows down around that base tempo while being on grid most of the time. It’s a playful game between the clock and its trailing rhythms, not unlike three dogs drifting around its steadily paced owner on a nice walk in the afternoon.

Now that I had a good gate sequence, I needed some pitch to go with it. This patch uses four outputs from the Joranalogue Generate 3 as the main sound source. All four of the outputs (odd, even, full, and core) have very different sounds and timbres, and are up to two and a half octaves apart,2 each patched to a Natural Gate input. But even though I was only using a single pitch sequence for four separate parts, I knew I wanted that pitch to be derived from the same source as my rhythms. I wanted as much of the patch as possible to be driven by those four original chaos outputs. Using a mult, I ran the same four The Hypster outputs used to create my gate sequence in Numberwang to Let’s Splosh, and randomly chose four outputs that were then mixed in the Atomosynth Transmon before making its way to Quantermain for quantization (E Japanese), and finally to Generate 3’s v/oct input. These four Let’s Splosh outputs were modulated in this very excellent voltage controlled matrix mixer via four outputs from the Nonlinearcircuits Frisson. Using four mixed sources for pitch allows for some easy flexibility when trying to add variety. A twist of any of the knobs on the mixer will give a different result in the final pitch sequence. The pitch change was being clocked in Quantermain by one of the unused Numberwang outputs, along with all four notes in the sequence at the Natural Gates’ “Hit” inputs. Once the “Open” parameter on Natural Gate was closed to give the notes definition outside of pitch and timbre changes at about 1:30 in, those same gates also triggered four envelopes on a pair of Frap Tools Falistris to modulate the “Open” parameter and give each note just a little more punch and space.

But Let’s Splosh wasn’t finished doing its part at deriving the pitch sequence, as 10 other outputs were used to modulate various parts of the patch. From subtle changes in the hi hat’s envelope decay, to modulating the “Even”, “Odd”, and “Fundamental” CV inputs on Generate 3 that are constantly changing the timbre of each note produced, and both P1 and P2 CV inputs on both Pladask Elektrisk Dradds used in the patch, Let’s Splosh, and the four signals that feed it, are all over this patch. In total 14 of the 16 Let’s Splosh outputs were used, spreading out remnants and recombinations of those four original chaos signals throughout the entire patch. The only independent module in play that isn’t being driven by those four original chaos signals is the NLC Frisson, which plays a somewhat minor role in modulating direct descendants of those four original chaos signals in getting a pitch CV.

From here the patch is relatively simple, mostly with the sequence running through various effects. The most obvious effect is the ever-wonderful Olivia Artz Modular Time Machine. The taps on the delay combined with feedback can take a very simple four note sequence and turn it into any rhythm I can imagine, and plenty others I can’t, even if the one in this patch is rather unimaginative with all of the taps active, though at different levels. But it’s not just some ornamental delay that I was after either. It’s the Time Machine, when juxtaposed against the steady kick drum, that fully reveals the chaotically drifting rhythm. It’s the key to the entire endeavor. The sequence is only four notes long, and all four notes are quick plucks in Natural Gate. There isn’t much musical information to go on, despite the pains taken to create the patch, and it’s the Time Machine that helps bring that very simple sequence to life. With Time Machine, the slightly out of place notes in the sequence are given a chance to wander. It exposes the frolicsome ebb and flow of chaos for all to see.

Another accompanying effect used in the patch is the always beautiful Rossum Electro-Music Panharmonium. I’ve found Panharmonium to be indispensable in my patches, and have written about it before, as it allows me to fill sonic holes in a very organic way, using the main driver of the composition as its muse. Pitching the Panharmonium up or down to suit my needs, I can fill gaps in the frequency spectrum, or avoid the clashing of instruments in a particular spectrum. I also frequently use it for its excellent ability to fill space, especially in patches that are otherwise sparse, and since it follows its input directly, it’s always harmonically related. In this patch I pitched Panharmonium down an octave using cross faded sines, and ran it through the Bizarre Jezabel Mimosa as an insert, adding progressively more and more distortion as the piece progressed, with it running full wet, though not full distortion, by the end. This creates a bed of pads for these meandering rhythms to float through, while filling space in the frequency spectrum. It helps create texture, and gives the composition some weight.

A pair of Pladask Elektrisk Dradds also made an appearance, even if it didn’t really work out. Using the dry sequence and its many repeats from the Time Machine, my first thought was to fade the granular outputs of the Dradds in and out. Something to add some ornamentation to the patch, but without being prominent. It sounded great when I was setting it up, but is barely audible for most of the patch. Which brings me to the new SetonixSynth Shaka modular voltage controlled stereo matrix mixer.

It’s also no secret that I really like the AI Synthesis 018 Stereo Matrix Mixer. It fundamentally changed the way that I patch and how I go about composing pieces from the moment it was first installed. It opened up a lot of opportunities for how I enjoy patching in modular. I’ve used it in literally every patch since it went in the case. It prompted me to buy the also excellent Atomosynth Transmon voltage controlled matrix mixer. When SetonixSynth announced earlier this summer that they would be releasing a voltage controlled stereo matrix mixer, I knew I was going to get it. I quickly joined the pre-sale mailing list which would give a goodly discount on the first units sold. As soon as I got the email with a link a couple of months later, I went ahead and purchased a Shaka 8 and two Shaka 4 expanders for a four input, four output voltage controlled stereo matrix mixer. There’s the very real possibility that I purchased the first one sold once that link went live. As soon as I got it, it went in the case. I used it in my first patch after putting it in, though I didn’t use any voltage control, opting to see just how close it is to the AI Synthesis on an even playing field. It sounded great. Like the AI Synthesis, the Shaka system is made foremost with high quality sound in mind. But I did notice that the exponential nature of the volume control was unlike anything I’d used before. There’s no sound output until you get to about noon on the dial, and it moves up rather quickly from there. According to the developer, at full attenuation, the output is at -100dB, while it’s still a remarkable -50dB with the dial at noon, maxing out at unity gain (8v) at full clockwise. Adding CV up to 10v can output your signal at +20dB. But that leaves just half a knob twist to dial in the level of each node, making fiddling with knobs a must, and the need for precision is paramount, especially if you’re to perform with it. I won’t say I had trouble dialing in good levels with the knobs. It was easy enough, even if that meant paying much closer attention to a simple process than I normally might.

But once I decided to try and use CV control with this patch, I was stymied by the exponential nature of the level control. I’ve never used an exponential VCA before. All of mine are either linear, or somehow switchable between linear and logarithmic. I was trying to do relatively simple things that I’ve done since my very first patch, like using a cycling envelope to open and close a VCA, and I simply couldn’t figure it out. My first thought was that since the VCA is fully open at 8v, I’d send an 8v envelope in the CV input for a channel and everything would be right with the world. Only it wasn’t. With an 8v envelope from Zadar and the knob at full CCW, I got virtually nothing from the output. I would hear the two Dradds granular-ing away for perhaps two seconds of a 20 second envelope. I couldn’t get any sound at all until the envelope was higher than 6v. I was stumped, with no idea what the problem was, much less a solution. I tried adding some offset with the knob, but that only led to blowing the signal out quickly. I never did find a good solution, hence the sparse appearance of the Dradds.

But hope isn’t lost. In the Shaka thread at Modwiggler, I noted my frustration and was given a couple of tips by the developer. He admits that using CV will take some adjustments to how one might normally patch a VCA. In his last response to me he noted, “With such a slow moving LFO, your best bet is probably to attenuate it more into the range you want. The full attenuation of this module is -100dB, the maximum allowed by the VCA it’s using, so at 10 o’clock it attenuates by -65dB and at noon it attenuates by -50dB. Depending on the input signal that is still a lot of attenuation, so is probably where you want to start for many applications.” He further goes on to say that having silence was his goal at full attenuation, noting that it was the largest concern from testers during development. Having had mixers and other gear that bleeds audio where it doesn’t belong, whether in an output or via crosstalk between separate channels, I can’t say that I blame him. If it’s not a vactrol based device, it shouldn’t ever bleed.

That said, this needed conditioning of CV before going to a VC mixer seems to be trading one hurdle for another. A voltage controlled mixer is desired so that you don’t need separate VCAs to manage signal levels. They’re built right in. That’s a highly desirable feature, especially with stereo signals. But if I need a VCA, or an attenuator, to condition my CV for use in the mixer CV inputs, I’ve simply traded out the reason why I need a VCA pre-mixer. It’s a side step, when the point is an improvement. An external VCA is an external VCA whether it’s used for note shaping before a mixer or envelope attenuation in order to shape the note in the mixer. Add in the relative complexity of having to carefully attenuate and shape the CV alongside meticulous knob placement on the mixer itself so that the CV functions in the way you think it should, and I’m not yet convinced that this particular implementation a real step forward. I’m not yet ready to give up on the Shaka system. It’s a very powerful idea that could bring yet another boon to my patching in the same way the AI Synthesis 018 did over a year ago. But if these VCAs don’t function like virtually every other VCA I regularly use, and CV preparation is more of a chore than simply using a VCA for note shaping before the mixer, I’ll have to re-evaluate its place in my rack.

Unfortunately I was unable to get good CV control over the Dradds’ level, and it only peeks through seldomly, and for only a short time. Fortunately my inability to get good CV control over the Dradds wasn’t a crucial part of the composition, and despite its absence, the patch sounds great.

The last part of the patch couldn’t be simpler. The kick drum is a simple filter ring with the Frap Tools Cunsa. The same envelope used to hit the filter input is also used as FM to give the drum a bit more punch. The hats are just as simple, using white noise from Sapel that is patched through Cunsa using a HP output. The VCA in Cunsa is hit by an envelope with a very lightly modulated decay to introduce some difference. Something between a fully closed “tic”, and a very slightly opened “pshh.” Both envelopes are clocked originally from that same regular downbeat of the four step sequence, but it’s patched through Pamela’s Pro Workout. Both outputs are at a 2x multiplier, with the hi hat output being shifted 50% to be on the offbeat.

Overall, this was a really fun patch to make. I had an idea that I was able to bring to fruition, despite some difficulties with a new piece of gear. I’ll keep working with the Shaka system until I either conclude that it’s better than the AI Synthesis 018, or I’ll sell it and wait for the next alternative.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Numberwang
Nonlinearcircuits Let’s Splosh
Nonlinearcircuits Frisson
Nonlinearcircuits De-Escalate
Atomosynth Transmon
Joranalogue Audio Generate 3
Rabid Elephant Natural Gate
SetonixSynth Shaka 8 + 2x Shaka 4
Rossum Electro-Music Panharmonium
Olivia Artz Modular Time Machine
Bizarre Jezabel Mimosa
4ms Shaped Dual EnvVCA
Xaoc Devices Zadar
Schlappi Engineering Boundary
Frap Tools Falistri
Frap Tools Cunsa
Frap Tools Sapel
Intellijel Amps
Pladask Elektrisk Dradd
Knob Farm Ferry
Pamela’s Pro Workout

Pedals Used:
Vongon Ultrasheer

Performed and recorded in 1 take in AUM on iPad via the Expert Sleepers ES-9.

  1. Or how how the turn signal in your car will drift in and out of time with music or another car’s turn signal. ↩︎
  2. As explained in the Generate 3 manual, “[The Core output] is the 10 Vpp triangle wave output straight from Generate 3’s VCO core. Also note that it is at half the frequency of, so one octave below, the fundamental output, and thus can be used as a sub-octave signal” The manual continues on to note that the “Even” output is a saw wave at twice the frequency of the fundamental, the odd is an octave and a half higher (beginning on the 3rd harmonic), and the “Full” wave being all harmonics, including the fundamental. ↩︎

Stochaotic Bubbles: Effervescent Chaos Up And Down

Since I’ve recently received several modules, I’ve been using them rather heavily of late, and they’ve kind of taken front and center. The Nonlinearcircuits Stochaos and Humble Audio Quad Operator are featured in many of my recent patches, and this is no exception. I wasn’t sure, exactly, what I wanted with this patch, but I knew I wanted a chaos clock that was moving fast. I wanted lots of gates firing quickly, and use those gates to hit 4 separate LPGs, this time a pair of Tokyo Gates. Then I knew I wanted these quickly firing notes to be heavily delayed, and sent to a resynthesizer to fill in space and give something for those quickly firing notes and repeats to swim in. I wasn’t imagining bubbles when I first started, but that’s what I kept coming to as I was fiddling with the patch, and after a while leaned into this theme a bit to see where I could take it.

Getting a fast chaotic clock was the easy part. I’ve been using chaos-based clocks almost exclusively for a few months. I don’t mind a grid, but most of my creative inclinations are more towards malleable textures, and chaos provides an almost perfect ebb and flow. At slow tempos it’s definitely noticeable, but this patch was to be clocked at a very high rate; perhaps even approaching audio rate, and those differences at high rate are much less noticeable As per usual, I sent the modulated chaos signal to Divide & Conquer, before sending a fast division to Stochaos. From there the chaos-generated gates would go to the CalSynth Changes to create some snappy decay envelopes that would hit the CV input of four separate Tokyo Gates. The outputs of the Tokyo Gates were mixed into 2 signals in the Mutable Instruments Veils, and finally sent to the AI Synthesis 018 Stereo Matrix Mixer.

The audio is from the 4 operators of the Humble Audio Quad Operator. Although I initially experimented with tweaking the wave shape of the operators, several times, actually, I settled on sine waves. I also tried to work in some FM, but I couldn’t find exactly what I was looking for, which is likely because I was using all 4 operators as carriers, rather than trying to use just a couple of the oscillators as carriers, with the others acting as modulators. It’s tough to get oscillators to behave when you have lots of cross frequency modulation happening. Generally it’s pretty pedestrian as far as the audio source, but there are so many individual notes that are echoed so many times that anything much more complex might be a wall of sound rather than something more enunciated.

The pitch signal is taken from a slow chaos wave through Xaoc Devices Samara II for some careful offset and attenuation before going to uO_C’s Quantermain for quantization into D minor (even if I have no idea what the oscillator is actually tuned to), before being sent to the v/oct input on the Quad Operator. That accounts for the generally up and down nature of the pitch progression. It’s also a good example on how chaos operates. It’s steady-ish, but there are definitely times when the chaos deviates from its path. Sometimes that means speeding up or slowing down. Sometimes that means direction reversals. Sometimes it means lingering at some pitches longer than others. You think you know what’s going to happen, but then the chaos surprises you, providing something interesting. Even still, I feel like there is too much of the same thing when it comes to the pitch in this patch, but since it was more an exploratory patch I think I can forgive myself.

I recently became aware to the dismal fact that my main synth, a large set of separate subsystems that comprises 1,560hp and that has another 588hp in interchangeable subsystems, did not have a vactrol-based LPG in it. Despite having several vactrol LPGs from the Make Noise LxD and Optomix, to the Nekyia Sosumi, and still more, not a single one was in my main case. All of them had been moved to either my Make Noise Satellite Subsystem, or else my Side Case. I have plenty of non-vactrol-based LPGs like the Rabid Elephant Natural Gate, Bard Synthesizers VTG, Frap Tools CUNSA, and Verbos Amp & Tone in the main case, but not one vactrol LPG. As soon as I came to this realization I knew that it couldn’t stand for a single moment longer, and moved a pair of Tokyo Tape Music Center Tokyo Gates from my side case back to the main case. I’d get 4 channels of my favorite vactrol LPG to go along with all of the additive-style oscillators I tend to gravitate towards. Three Body, Quad Operator, Algo, Mob of Emus, and many others besides pair so naturally with a LPG that it seems boneheaded to not have them ready for the occasion.

I’ve liked LPGs for a long time. My first foray was via the Make Noise Optomix, which quickly led to several others, both with and without vactrols. I like both types, but it’s the non-exactness of vactrols that really draws my ear. They can be a little sloppy, particularly when hit repeatedly with a gate or envelope. Vactrol-less LPGs like the Natural Gate or DXG too sound great, but there’s something about their precision that doesn’t feel the same as with vactrols. It’s almost too perfect, and too repeatable. I also feel that vactrols bleed prettier, which is a patching technique I love to use. I don’t know whether I was insistent in using vactrol LPGs in this patch because I thought they’d be best, or because I had just put four of them back in my main case, but I decided on using the venerable Tokyo Gate.

Even if I don’t use Tokyo Gate very often, it is my favorite of the vactrol LPGs I’ve had. Its decay is adjustable (to a degree) with the Bridge control, pleasant, and even can have a little squelch of resonance if you pin the Bridge knob full CW. Although you can directly ping Tokyo Gate with a trigger or gate just fine, I’ve found that envelopes generally sound more pleasant to the ear. There’s a harshness with slamming a gate into that isn’t there when using a well shaped decay envelope.

In this patch, because I was using sine waves, the Tokyo Gate probably performs not much different than a regular VCA. There are no harmonics in a sine wave to reveal and hide again as the filter also goes up and down with the volume, but you still get that vactrol decay which can’t really be had with anything else. I also liked the perceived sloppiness of the vactrols as they were being repeatedly hit by envelopes. All of the chaos-derived gates flying about in rapid succession, triggering short, snappy envelopes started to resemble four separate telegraph signals flying about in space.

And although the effect of four vactrol LPGs pinging away was pretty cool, I knew that I wanted a lot more of it by using delay. These pings were the start, not the end. Far from it. Rather than using one delay like I normally might, I opted to use two of them in parallel.

Delay number one was the Venus Instruments Veno-Echo. Its reverse function per channel was being modulated by chaos-derived gates from the very slow end of the Divide & Conquer. Since the original chaos clock signal itself was running quite fast, even very low divisions would trigger too frequently for me, and decided to run those gates through the CuteLab Missed Opportunities gate probability utility that I tend to use in most of my patches.

The second delay is the Olivia Artz Modular Time Machine. Using various delay taps would ensure the effervescent feeling I was getting as the patch started to take some shape, spraying delays all about the stereo space. Besides creating that bubbly feeling I was now striving for, the Time Machine is also the source audio for the Qu-Bit Aurora resynthesis module that fills in the gaps and helps create something thicker for those bubbles to float in.

Altogether we have the feeling of bubbles floating around space. One thing I might try in a future patch like this is to use the pitch as CV for the clock rate. As the pitch changes, so too does the clock, creating more gates with higher pitched bubbles, and fewer with lower pitched bubbles. I’d also be a bit more inventive with my pitch sequence as well. This is just a chaos signal triggering Quantermain as it moves through from note to note in the selected scale. Even if I want to use chaos as a source for pitch, in order for there be some quality pitch movement I’d be better off using one of the chaos derived gates to trigger the quantizer via some labyrinth of gate probability, logic, and/or a Bernoulli Gate.

Altogether there isn’t anything special about this patch other than it was experimentation throughout. Experimentation with chaos as pitch. Experimentation with extremely fast gates with vactrol LPGs. Experimentation with delay taps to get a good feeling of watching bubbles in a freshly poured glass of Coke. Experimenting with parallel delays. Experimenting with Aurora.

Modules Used:
Nonlinearcircuits The Hypster
Nonlinearcircuits Divide & Conquer
Nonlinearcircuits Stochaos
Nonlinearcircuits Triple Sloth
Xaoc Devices Samara II
CalSynth uO_C
Humble Audio Quad Operator
CuteLab Missed Opportunities
CalSynth Changes (MI Stages)
Mutable Instruments Veils
Tokyo Tape Music Center Tokyo Gate
Olivia Artz Modular Time Machine
Venus Instruments Veno-Echo
Qu-Bit Electronix Aurora
Knob Farm Ferry
Vongon Ultrasheer

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

Chaos Organ: A Quad Operator Experiment

Hi, my name is Chris, and I’m a chordaholic.

Lately I’ve been in a polyphonic mood, attempting to find evermore methods of creating chords and chord sequences with the modular synth. Using a DAW for this sort of thing is child’s play, but in modular synthesis, creating polyphonic chords isn’t a straightforward task most of the time. Most oscillators can only output one pitch at a time, and using multiple oscillators can create timbre mismatches. Tuning 4 or more oscillators to the same pitch while not suffering from pitch drift over time is a chore and a half. Sequencing chords in a traditional modular sequencer can be a mission rife with potential problems, and you don’t always want the repeating uniformity of a sequence, but something more organic. In short, modular synthesis is traditionally a monophonic enterprise, with only a small handful of monophonic voices being used together. A melody, a bass line, perhaps something else to fill in space, and some effects to create a stereo space. Full on chord generation isn’t common because it’s a tedious exercise that generally requires a lot of gear and even more patience. But over the last couple of years this is beginning to change. Although there have always been ways to create chords and chord progressions in modular synthesis, it’s not until relatively recently that we can more easily create chords. Oscillator banks like the Xaoc Devices Odessa (with its expander, Hel), Humble Audio Quad Operator, and RYK Modular Algo, and chord sequencers like the NOH-Modular Pianist make composing with chords on the modular a much more efficient and simple process.

In a previous patch I used the very excellent (and recently updated) NOH-Modular Pianist to create chords that were triggered by an irregular chaotic gate pattern. Although I am generally psyched about how that patch turned out, there are still a couple spots of ugliness that appear due to a bad match of back-to-back chords in the progression. On their own they sound fine. But once smeared out by the delay, FFT resynthesis, and reverb, there is some clashing that happens, creating some ear-cringing dissonance. I wanted something cleaner, and I didn’t want to have prescribed chords, but something that could change organically with a bit of modulation, without the worry of a spicy note peeping its ugly head in. Enter Quad Operator.

The Humble Audio Quad Operator is a bank of 4 oscillators that can be tuned to harmonic and subharmonic ratios of a base pitch. Tune the base pitch to your liking, then simply adjust the ratios of each operator, and you have oscillators that are all harmonically in tune. Patch in a single v/oct signal, and all 4 operators will move along in harmony. The Quad Operator is primarily designed as a the ultimate FM oscillator with any traditional FM algorithm possible, along with any other combo of modulator/carrier you can imagine. But with each operator being independent with its own output (both in a mix and independently), using it as a complex chord generator is a very happy side benefit. Input a single v/oct signal, output always-harmonically related chords. Add in some modulation of a couple of the operator’s ratios, and not only will the chords always be harmonically relevant, they’ll also quite often be different (even if the base of the chord is the same). For modulating the ratios I used both the Nonlinearcircuits Stochaos and the Auza Wave Packets.

There are lots of methods for getting a nice v/oct signal. Sequencers are the obvious solution, but with a quantizer any signal can be a used for pitch. S&H is extremely popular, but random pitch is only slightly less boring than patterns repeating themselves over and over in the exact same way. One solution is to use LFOs alongside triggers to create melodies or arpeggios. Envelopes work great too. But I wanted something a smidge different. LFOs and envelopes repeat themselves by nature. Unless modulated, an LFO or envelope is the same up and down every time. This regularity can be mitigated by irregular triggers, but then it starts to veer towards random, which isn’t really what I’m after. Enter chaos.

In my post, Chaotic Gates, I explained how chaos signals are regular-ish. They take the same general path on each pass, but some unknown irregularity in the feedback path will shift it off course in a non-regular way. These signals are kind of regular, but enough differences come about that there are always surprises. I mostly use chaos as a modulator of some kind. Opening and closing filter cutoffs or wavefolders, slowly modulating level, timbre, or some other facet of a patch. Today I would use it for pitch.

In most circumstances I would use triggers alongside my CV input with a quantizer. Send off a trigger, and whatever voltage is present at the quantizer’s input is sampled, quantized to the nearest note of your chosen scale, and output to the v/oct input on your oscillator. But some quantizers can function without a corresponding trigger, sensing voltage changes, and quantizing automatically once it detects a change large enough to be a separate note in the scale. Quantermain, the quad quantizer algorithm on the ever-useful Ornament&Crime, has this capability, and I decided to give it a whirl. It should be easy enough. Shove in a chaos signal, get quantized pitch CV on the output. And by and large, it was that easy. I knew I wanted fairly slow chord changes, so I needed a slow(er) moving chaos signal. After a bit of attenuation of the chaos signal to reign in the range, I was getting exactly what I wanted. Irregularly moving chords that shift at irregular speeds and that have irregular movement both up and down.

But chords themselves, cool as they are, need embellishment to be interesting. For effects, I sent the chords, via the stereo matrix mixer, to the Qu-Bit Nautilus for some smearing with low pass filtered delay, before going to the Instruo Arbhar. My initial plan was to have some shimmery granular action floating on top of the chords, but I could never find what I was hoping to get. Instead I found a happy accident of harmonically relevant dancing grains that moved to a rhythm.

These dancing grains, although not at all what I envisioned when I set out on this path, turned out being perfect, giving a sense of life inside the thick chords. Like minnows in a lake, or lightning bugs in the night.

Enjoy!

Modules Used:
Nonlinearcircuits Triple Sloth
Nonlinearcircuits Stochaos
Auza Wave Packets
Humble Audio Quad Operator
ST Modular Sum Mix & Pan
AI Synthesis 018 Stereo Matrix Mixer
Qu-Bit Electronix Nautilus
Instruo Arbhar
CalSynth uO_C
Knob Farm Ferry
Mutable Instruments Blinds
Oto Bam

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.


A Sketch With The Nonlinearcircuits Stochaos

I went into this patch with the idea that I was going to see if the Nonlinearcircuits Stochaos was appropriate for inclusion in a travel synth I’ll be taking to Alaska this summer (it’s not). I’m looking for gates. Many gates, actually. And although the Stochaos has many gate outputs, it runs on a clock, and sticks to the grid. It’s an awesome tool for what it is doing, but it’s not what I’m looking for in that synth, unfortunately. But despite not being fit for that particular project, this 8hp wonder is a fantastic Chaos or Random (or Both!) driven sequencer that can drive a whole patch.

This sketch was designed to use chaotically driven gates in order to ping the 4 operator outputs of the Humble Audio Quad Operator. Since they operate on ratios of the base pitch, it would never be out of tune, and all of the 4 operators would always have nice harmonic relationships. These pings would then go through the Venus Instruments Veno-Echo for some rather pedestrian unmodulated stereo delay that was perfect.

Since the point of the patch was to see what I could do with the Stochaos, I used it as the heart of everything. It received a clock from the Xaoc Devices Batumi II, and from there performed its wizardry sending gates to and fro. These gates pinged the 4 operator outputs in the Frap Tools CUNSA, as well as triggered various events all over the patch. Stochaos also provided the sequence which was quantized in Quantermain on the uO_C via one of its four CV outputs.

There was some modulation, but not very much. I used one of the Stochaos gate outputs to trigger the Auza Wave Packets which modulated the ratio of one of the operators on the QO. Two of its gate outputs clocked the Nonlinearcircuits Bindubba which also modulated one of the operator’s ratio. Otherwise the patch is pretty barren of modulation. The delay isn’t modulated at all, and neither is Aurora.

As per many of my recent patches I wanted to use some FFT, but rather than reaching for Panharmonium yet again, I used the Qu-Bit Electronix Aurora. I was sort of happy with the results, but I’ve never really studied Aurora in much depth, and so opted to go with whatever sounded good enough in the moment. It’s not a prominent part of the patch, but it does serve to fill in the space a bit. It’s definitely reminded me that I need to learn a few things before I go on my trip so I’m not busy manual digging instead of making music with the precious little time I’ll have.

I didn’t start this patch with a kick drum in mind. I was originally hoping to get not only random gate outputs, but randomly timed gate outputs. My original intent was to make an ambient piece, but that idea sank quickly, so I pivoted in a more rhythmic direction. Once a couple of things were settled, it was clear that the patch was begging for a kick drum. I’m not a four on the floor kind of guy, so opted for something more erratic. Still on the time grid, but not at all predictable. For this I used a divided output of Batumi II into the always fun CuteLab Missed Opportunities and adjusted the probability to taste. The kick is made with a Joranalogue Generate 8 into a Rabid Elephant Natural Gate. The trigger would go to both Natural Gate’s Hit input, as well as triggering the Joranalogue for a short envelope for both Exponential FM on Generate 8, and the Control input on Natural Gate.

Overall I’m really pleased with this patch. It’s a sketch with lots of room for improvement, but the direction and feel is very good. The biggest change I’d make is toning down the high registers. Not only are they too loud, but there’s too much of it. It’s a matter of better attenuating my CV and watching the initial knob position for ratio to ensure they don’t go that high. This alone would improve my result exponentially. I’d also like to do a better job of shaping the melody notes in CUNSA. I’m not yet pleased with the tail of those notes.

Although the Stochaos didn’t meet my need for inclusion in a travel case, I did find that it’s a fine sequencer that can control entire patches with naught but a clock input. You choose the style of decision making you want it to do, Chaos, Random, or Both, and it happily goes to work with 8 gate outputs along with 4 CV outputs, the fixed chaos signal used by the circuit, and some Pink Noise. If you’re not looking for strict control over sequencing, or you’re looking for a sequence of random gates and CV for always-surprising modulation, the Stochaos deserves a look.

Modules Used:
Nonlinearcircuits Stochaos
Nonlinearcircuits Bindubba
Xaoc Devices Batumi II
Humble Audio Quad Operator
Frap Tools Cunsa
Frap Tools Sapel (to convert 5v gates to 10v triggers)
Frap Tools Falistri (to convert 5v gates to 10v gates)
AI Synthesis 018 Stereo Matrix Mixer
Venus-Instruments Veno-Echo
Auza Wave Packets
Knob Farm Ferry
Qu-Bit Electronix Aurora
Oto Bam

Improvided and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.

A Chordal Soundscape With The Pianist, Odessa, Panharmonium, And A Couple Of Tape Delays

I’m not going to go in depth on this patch as there’s a lot of modulation happening and I can’t possibly document it without rambling in circles. I’m also using several techniques I’ve already written about, like using chaos at a clock, running a delay into the Panharmonium, using tape delays, and panning using VCAs.

A couple things of note:

The Echofix EF-X2 tape delays have incredibly good overdrive. The clipping is all analog and is both warm and musical. I would absolutely use the preamp alone to add anything from subtle saturation to thick overdrive. All of the distortion in this track is from the pair of EF-X2 tape echoes.

The Pianist by NOH-Modular is a highly capable chord sequencer. Building progressions is easy and the interface is intuitive. It certainly has faults (that I’ll discuss later in a more comprehensive review), but overall it does an absolutely fantastic job.

Odessa is Odessa and I will make no apologies for it.

This is the first patch during which I’ve used both the go-to AI Synthesis 018 Stereo Matrix Mixer alongside my new mono (voltage controlled) matrix mixer, the Transmon by Atomosynth. I used the latter to mix the Sofia Mix output with the Odessa partials outputs, while panning the Odessa fundamental slowly from left to right (although I can’t really hear the panning in the mix if I’m honest). Having a voltage controlled matrix mixer with individual outs for 12 of the 16 channels, along with 8 channels that can attenuvert makes for a compelling piece of kit. The possibilities are endless.

Modules Used:
NOH-Modular Pianist
Xaoc Devices Odessa (+ Hel)
Xaoc Devices Zadar
Xaoc Devices Lipsk
Xaoc Devices Erfurt
Xaoc Devices Samara II
Xaoc Devices Batumi II (+ Poti II)
Rossum Electro-Music Panharmonium
Holocene Electronics Non-Linear Memory Machine
Atomosynth Transmon
AI Synthesis 018 Stereo Matrix Mixer
Nonlinearcircuits The Hypster
Nonlinearcircuits Divide & Conquer
Nonlinearcircuits Triple Sloth
Auza Wave Packets

Improvised and recorded in 1 take on iPad in AUM via the Expert Sleepers ES-9.


A Dark Drone: First Patch With Sibilla

I was recently afflicted with a particularly bad case of GAS. During this latest bout, I hurredly purchased the drone specialist module, Sibilla by Clatters Machines. I didn’t need another drone machine, but after a couple of recent subsystem rearrangements, I had 10hp to fill in my Stereophonic Black Subsystem, and within a couple of YouTube demos jumped at the Sibilla. I don’t like GAS, and I know that it can be unhealthy, but it sometimes (oftentimes?) gets the best of me.

Despite my knowing it wasn’t a particularly wise purchase, I still thought that Sibilla could produce something nice. Had I doubted it, I wouldn’t have succumbed to GAS, at least not for this particular module. I had meant to use it in my recent Piano Mist patch. I had it patched up but never turned it up in the mixer because I was so enthralled with what I had in the Piano. So today I decided to start with Sibilla and see where it could go.

One of the reasons why I bought Sibilla was because I have a difficult time resisting additive oscillators. Although Sibilla isn’t anything resembling a standard oscillator, it does use additive synthesis as a big part of its process. Along with multiple delay lines and a fixed low pass filter (with adjustable resonance), Sibilla adds harmonics using different waveforms that are differently phased to help create a bed of complex moving textures. Naturally I wanted to emphasize those harmonics to create not only movement, but a sense of chordal change.

My initial experimentation was simply playing the Rise and Fall knobs, which was very cool. Improvising isn’t something I do very much, and I greatly enjoyed it. I even tried using the Doepfer A-198 Trautonium Ribbon Controller, but I decided to keep this sketch as more of a drone with full harmonic changes, not a part of a drone while using its harmonics as an improvised solo. So in order to create those chord-like changes, I reached for 2 of my favorite things: chaos and sample and hold.

I ran one of the outputs from a patch programmed Joranalogue Orbit 3 to the Joranalogue Step 8’s input. Step 8 functions as a really large Sample and Hold, with each step running as an attenuator. The trigger for each step comes from the Rise gate of a modulated looping Contour 1. The steps are not regularly triggered, so there’s nothing to time. The Step 8 samples the chaos signal, attenuates it depending on the slider position, and sends out that voltage to the Fall input. Each cycle is in continuous flux, creating movement, but not regular movement.

Joranalogue’s Orbit 3 is an unsung hero of chaos modulation. Nonlinearcircuits dominates the chaos landscape in Eurorack, and other forms of chaos generation are often overlooked in light of NLC’s vast catalogue and strong pedigree as the source for chaos in modular synthesis. But Orbit 3 has some distinct features that make it a compelling competitor. It’s controllable in a way that NLC’s chaos generally isn’t. Orbit 3 has full frequency control, a reset, and you can control the position of both attractors. I’ve been able to consistently get compelling low frequency waveforms that are interesting and easily tweakable. I don’t always want overarching control over chaos signals and how they go about their business, but when I do I patch Orbit 3.

The Audio Path

The audio path of this patch is fairly simple:

  • The L/R audio outputs of Sibilla > Bizarre Jezabel Pkhia stereo multimode filter (LP out) > Worng Vertex stereo VCA for a bit of volume manipulation > Channel 4 of the AI Synthesis 018 Stereo Matrix Mixer.
  • The audio is then sent from Output 1 > Miso Cornflakes.
  • Cornflakes > Ch 1 input of the matrix mixer to be mixed with the dry drone signal.
  • The mixed drone and granular processing is output from Ch 4 of the matrix mixer to my final mixer.
  • A send to the Vongon Ultrasheer for some reverb and vibrato, and we’re done.

I didn’t particularly need to send the output of Sibilla through another filter, it has a low pass filter of its own, but I wanted to create more movement per channel. I initially wanted to use Pkhia’s Band Pass outputs, but that didn’t really work, so decided to use the LP outputs with the filter set initially almost completely wide open. With some chaos modulation of the filter cutoff in each channel I was able to get slow, unpredictable appearance and disappearance of some harmonics which created lots of subtle, yet interesting, effects throughout.

Cornflakes is set to a constant pitch of +2 octaves, with its position, grain size, grain length, diffusion and speed being heavily modulated by chaos. This effect creates the slightly detuned shimmer on top of the drone, and heightens suspense as the patch moves along, finally releasing some of that tension before the drone fades away.

The reverb and vibrato is the exceedingly good Vongon Ultrasheer. The reverb portion is set with a long tail and no pre-delay. The tails also are set to favor higher frequencies to help avoid mud in the lower frequencies. Sibilla has 4 separate delay lines, so the lower frequencies aren’t without its own sort of reverb. I just didn’t need them delayed and diffused even more. Although I didn’t notice it while recording, there is a bit too much vibrato. It’s not distracting my any means, but it’s a bit too much in depth and speed, and it is noticeable in a way I rather it weren’t; like a shade too much syrup on your waffles.

The Control Path

If the audio path is simple enough, the control path is anything but. The heart of the modulation in this patch is chaos generated by a patch programmed Orbit 3. More chaos is used from NLC’s The Hypster. Slow chaos affects nearly every parameter of the patch, with the Auza Wave Packets in its debut role in my synth on 3 Cornflakes modulation targets.

Sibilla doesn’t have every parameter being modulated, but there is still a fair amount of modulation. Orbit 3 is modulating the Rising harmonics and resonance, while also supplying the signal for the Step 8 to do its sample and hold business.

Orbit 3 is also modulating the cutoff frequency for both sides of the Pkhia, the rate of the Rise and Fall on Contour 1, as well as self-modulating the EP+ and Distribution as a means to keep the signal ever-changing.

Step 8 provides the changing chords via its sample and hold functionality at the Scan output to Sibilla’s Fall input, triggered by the Fall gate of a constantly changing, looping envelope from Contour 1. The Analogue 3 output modulates the Distribute input on Cornflakes, with Analogue 5 modulating Orbit 3’s Distribution.

Contour 1 provides the stepping action for chord changes with its Fall output, as well as gating Cornflakes’ record functionality with its Rise gate output.

The Auza Wave Packets, a complex modulation source centered around various stages to create sophisticated wave types, made its first appearance in one of my patches. I’ve never used it before, and still need to learn lots of things about it, but it seems the possibilities are endless. In this patch, I used “The Unipolar Wave” (output 2) to modulate Cornflakes’ grain Size, “The Capsulated Oscillator” (output 4) for the Length, and “The Pure Oscillator” (output 5) for the Position. NLC’s The Hypster played a minor in rounding out modulating Cornflakes’ Speed and Diffuse parameters.

There are still a lot of details to work out with this patch. The modulation is largely not attenuated or scaled in any meaningful way. I’d probably try opening up the attenuation on the chaos signal used in the sample and hold to change chords. I’d also try and see if I couldn’t hone in Cornflakes to something a bit smoother. But overall I’m pleased with this first patch, and I look forward to doing special things with it.

Modules Used:
Clatters Machines Sibilla
Bizarre Jezabel Pkhia
Worng Engineering Vertex
AI Synthesis 018 Stereo Matrix Mixer
Joranalogue Audio Orbit 3
Joranalogue Audio Contour 1
Joranalogue Audio Step 8
Nonlinearcircuits The Hypster
Auza Wave Packets
Mutable Instruments Marbles
Knob Farm Ferry

Performed and recorded in 1 take in AUM via the Expert Sleepers ES-9.

0:00
0:00